File size: 9,948 Bytes
fcaa164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import json
import os
import random
import shutil
import tempfile
from collections import defaultdict
from glob import glob
from typing import Literal

import func_argparse
import pytorch_fid.fid_score as fid
import torch
from jinja2 import Template
from pytorch_fid.fid_score import compute_statistics_of_path
from rich import print
from tqdm import tqdm
from transformers import GPT2LMHeadModel, GPT2TokenizerFast

import llms
from presentation import Picture, Presentation, SlidePage
from utils import Config, pexists, pjoin

fid.tqdm = lambda x: x
judges = [
    (llms.gpt4o, llms.gpt4o, "gpt4o"),
    (llms.qwen2_5, llms.intern_vl, "qwen+intern"),
    (llms.qwen2_5, llms.qwen_vl, "Qwen"),
    (llms.qwen_vl, llms.qwen_vl, "qwen_vl"),
    (llms.intern_vl, llms.intern_vl, "intern_vl"),
]
DEVICES = torch.cuda.device_count()


def get_ppl(slide: SlidePage, model: GPT2LMHeadModel, tokenizer: GPT2TokenizerFast):
    ppl = []
    text = slide.to_text()
    if len(text) == 0:
        return ppl
    tokenized = tokenizer(text, return_tensors="pt").to(model.device)
    with torch.no_grad():
        outputs = model(tokenized.input_ids, labels=tokenized.input_ids)
        loss = outputs.loss
        perplexity = torch.exp(loss)
        ppl.append(perplexity.item())
    return ppl


def eval_general(presentations: list[Presentation], evals: dict[str, list[int]]):
    for prs in presentations:
        if prs.source_file in evals["pages"]:
            continue
        evals["pages"][prs.source_file] = len(prs)
        evals["characters"][prs.source_file] = sum(
            [len(slide.to_text()) for slide in prs.slides]
        )
        evals["figures"][prs.source_file] = sum(
            [len(list(slide.shape_filter(Picture))) for slide in prs.slides]
        )


def eval_feature(
    presentations: list[Presentation],
    evals: dict,
    setting: str,
):
    device = f"cuda:{random.randint(0, DEVICES - 1)}"
    print("start scoring ppl")
    model = GPT2LMHeadModel.from_pretrained("gpt2").to(device)
    tokenizer = GPT2TokenizerFast.from_pretrained("gpt2")
    for prs in tqdm(presentations):
        try:
            if prs.source_file in evals["ppl"]:
                continue
            if (
                prs.source_file
                == "data/culture/pptx/ChemBio-in-the-HUB-public/PPTCrew_wo_SchemaInduction/SSRN-id2933553_Management of Systems Engineering and Technical Assistance of DARPA Research Programs/final.pptx"
            ):
                continue
            ppl = []
            for slide in prs.slides:
                ppl.extend(get_ppl(slide, model, tokenizer))
            if len(ppl) == 0:
                continue
            evals["ppl"][prs.source_file] = sum(ppl) / len(ppl)
        except Exception as e:
            print(e, "\n", "happended in ", prs.source_file)

    model = fid.InceptionV3([fid.InceptionV3.BLOCK_INDEX_BY_DIM[64]]).to(device)
    for ppt_folder in tqdm(sorted(glob(f"data/*/pptx/*/"))):
        if ppt_folder in evals["fid"]:
            continue
        source_folder = pjoin(ppt_folder, "source_slides")
        m1, s1 = compute_statistics_of_path(source_folder, model, 128, 64, device)
        try:
            with tempfile.TemporaryDirectory(prefix="ppteval_fid_") as temp_dir:
                for result_folder in glob(
                    pjoin(ppt_folder, f"final_images/{setting}/*")
                ):
                    folder_base = os.path.basename(result_folder)
                    for image_file in os.listdir(result_folder):
                        image_path = os.path.join(result_folder, image_file)
                        temp_image_path = os.path.join(
                            temp_dir, folder_base + "_" + image_file
                        ).replace(" ", "_")
                        shutil.copyfile(image_path, temp_image_path)
                if len(os.listdir(temp_dir)) < 10:
                    continue
                m2, s2 = compute_statistics_of_path(temp_dir, model, 32, 64, device)

                evals["fid"][ppt_folder] = fid.calculate_frechet_distance(
                    m1, s1, m2, s2
                )
        except Exception as e:
            print(e, "\n", "happended in ", ppt_folder, "on:", setting)


def merge_evals(folders: list[str], evals: dict):
    for folder in folders:
        sub_eval = json.load(open(pjoin(folder, "evals.json")))
        for dimension in ["content", "vision", "logic"]:
            evals[dimension] |= sub_eval[dimension]
    return evals


def slide_score(slide_folder: str):
    eval_file = pjoin(slide_folder, "evals.json")
    evals = defaultdict(dict)
    if pexists(eval_file):
        evals |= json.load(open(eval_file))
    text_scorer = Template(open("prompts/ppteval_content.txt", "r").read())
    vision_scorer = Template(open("prompts/ppteval_style.txt", "r").read())
    style_descriptor = open("prompts/ppteval_describe_style.txt", "r").read()
    content_descriptor = open("prompts/ppteval_describe_content.txt", "r").read()
    for slide_image in glob(pjoin(slide_folder, "slide_*.jpg")):
        slide_descr = slide_image.replace(".jpg", ".json")
        if not os.path.exists(slide_descr):
            style_descr = llms.vision_model(style_descriptor, slide_image)
            content_descr = llms.vision_model(content_descriptor, slide_image)
            json.dump(
                {"content": content_descr, "style": style_descr},
                open(slide_descr, "w"),
                indent=4,
            )
        else:
            descr = json.load(open(slide_descr))
            style_descr = descr["style"]
            content_descr = descr["content"]
        if slide_image not in evals["vision"]:
            evals["vision"][slide_image] = llms.language_model(
                vision_scorer.render(descr=style_descr), return_json=True
            )
        if slide_image not in evals["content"]:
            evals["content"][slide_image] = llms.language_model(
                text_scorer.render(descr=content_descr), return_json=True
            )


def pres_score(prs_source: str):
    if "/pptx/" in prs_source:  # ours
        source, setting, pdf, _ = prs_source.rsplit("/", 3)
        slide_folder = os.path.join(source, "final_images", setting, pdf)
    else:  # baseline
        slide_folder = os.path.dirname(prs_source)
    eval_file = pjoin(slide_folder, "evals.json")
    evals = defaultdict(dict)
    if pexists(eval_file):
        try:
            evals |= json.load(open(eval_file))
        except:
            pass
    evals.pop("logic", None)  # ? debug

    slide_descr = pjoin(slide_folder, "extracted.json")
    if not pexists(slide_descr):
        config = Config("/tmp")
        presentation = Presentation.from_file(prs_source, config)
        ppt_extractor = Template(open("prompts/ppteval_extract.txt", "r").read())
        extracted = llms.language_model(
            ppt_extractor.render(presentation=presentation.to_text()),
            return_json=True,
        )
        json.dump(extracted, open(slide_descr, "w"), indent=4)
    else:
        extracted = json.load(open(slide_descr))
    if presentation.source_file not in evals["logic"]:
        logic_scorer = Template(open("ppteval_coherence.txt", "r").read())
        evals["logic"][presentation.source_file] = llms.language_model(
            logic_scorer.render(
                background_information=extracted.pop("metadata"),
                logical_structure=extracted,
            ),
            return_json=True,
        )
    json.dump(evals, open(eval_file, "w"), indent=4)


# ppt eval
def eval_experiment(
    setting: str,
    general_eval: bool = False,
    feature_eval: bool = False,
    ppt_eval: bool = False,
):
    assert setting != "*"
    llms.language_model, llms.vision_model, judge_name = judges[0]
    print(f"evaluating {setting} under {judge_name}")
    print(
        "eval config :",
        f"general_eval: {general_eval}, feature_eval: {feature_eval}, ppt_eval: {ppt_eval}",
    )
    eval_file = f"data/evals/{setting}_{judge_name}.json"
    eval_stats = defaultdict(dict)
    if pexists(eval_file):
        eval_stats |= json.load(open(eval_file))
    config = Config("/tmp")
    prs_files = glob(f"data/*/pptx/*/{setting}/*/final.pptx")
    # filename dimension score
    print("start evaluation")
    if general_eval or feature_eval:
        presentations = [Presentation.from_file(i, config) for i in prs_files]
    if general_eval:
        eval_general(presentations, eval_stats)

    if feature_eval:
        eval_feature(presentations, eval_stats, setting)

    if ppt_eval:
        slide_image_folders = glob(f"data/*/pptx/*/final_images/{setting}/*")
        for presentation in prs_files:
            pres_score(presentation)
        eval_stats = merge_evals(slide_image_folders, eval_stats)
    json.dump(eval_stats, open(eval_file, "w"), indent=4)


def eval_baseline(
    setting: str,
    model: Literal["Qwen2.5", "gpt-4o"],
    general_eval: bool = False,
    feature_eval: bool = False,
    ppt_eval: bool = False,
):
    evals = defaultdict(dict)
    prs_files = glob(f"data/*/pdf/*/{setting}/{model}/final.pptx")
    slide_folders = [os.path.dirname(i) for i in prs_files]

    if general_eval or feature_eval:
        config = Config("/tmp")
        presentations = [Presentation.from_file(i, config) for i in prs_files]

    if general_eval:
        eval_general(presentations, evals)
    if feature_eval:
        eval_feature(presentations, evals, setting, fid_eval=False)
    if ppt_eval:
        for slide_folder in slide_folders:
            slide_score(slide_folder)
        for presentation in prs_files:
            pres_score(presentation)

    merge_evals(slide_folders, evals)
    json.dump(evals, open(f"data/evals/{setting}_{model}.json", "w"), indent=4)


if __name__ == "__main__":
    func_argparse.main(
        eval_experiment,
        eval_baseline,
        pres_score,
        slide_score,
    )