File size: 9,191 Bytes
fcaa164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import json
import os
from copy import deepcopy

import numpy as np
import torch
import torchvision.transforms as T
from FlagEmbedding import BGEM3FlagModel
from marker.config.parser import ConfigParser
from marker.converters.pdf import PdfConverter
from marker.output import text_from_rendered
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoFeatureExtractor, AutoModel

from utils.src.presentation import Presentation, SlidePage
from utils.src.utils import is_image_path, pjoin

device_count = torch.cuda.device_count()


def prs_dedup(
    presentation: Presentation,
    model: BGEM3FlagModel,
    batchsize: int = 32,
    threshold: float = 0.8,
) -> list[SlidePage]:
    """
    Deduplicate slides in a presentation based on text similarity.

    Args:
        presentation (Presentation): The presentation object containing slides.
        model: The model used for generating text embeddings.
        batchsize (int): The batch size for processing slides.
        threshold (float): The similarity threshold for deduplication.

    Returns:
        list: A list of removed duplicate slides.
    """
    text_embeddings = get_text_embedding(
        [i.to_text() for i in presentation.slides], model, batchsize
    )
    pre_embedding = text_embeddings[0]
    slide_idx = 1
    duplicates = []
    while slide_idx < len(presentation):
        cur_embedding = text_embeddings[slide_idx]
        if torch.cosine_similarity(pre_embedding, cur_embedding, -1) > threshold:
            duplicates.append(slide_idx - 1)
        slide_idx += 1
        pre_embedding = cur_embedding
    return [presentation.slides.pop(i) for i in reversed(duplicates)]


def get_text_model(device: str = None) -> BGEM3FlagModel:
    """
    Initialize and return a text model.

    Args:
        device (str): The device to run the model on.

    Returns:
        BGEM3FlagModel: The initialized text model.
    """
    return BGEM3FlagModel(
        "BAAI/bge-m3",
        use_fp16=True,
        device=device,
    )


def get_image_model(device: str = None):
    """
    Initialize and return an image model and its feature extractor.

    Args:
        device (str): The device to run the model on.

    Returns:
        tuple: A tuple containing the feature extractor and the image model.
    """
    model_base = "google/vit-base-patch16-224-in21k"
    return (
        AutoFeatureExtractor.from_pretrained(
            model_base,
            torch_dtype=torch.float16,
            device_map=device,
        ),
        AutoModel.from_pretrained(
            model_base,
            torch_dtype=torch.float16,
            device_map=device,
        ).eval(),
    )


def parse_pdf(
    pdf_path: str,
    output_path: str = None,
    model_lst: list = None,
    save_file: bool = True,
) -> str:
    """
    Parse a PDF file and extract text and images.

    Args:
        pdf_path (str): The path to the PDF file.
        output_path (str): The directory to save the extracted content.
        model_lst (list): A list of models for processing the PDF.

    Returns:
        str: The full text extracted from the PDF.
    """
    if save_file:
        os.makedirs(output_path, exist_ok=True)
    config_parser = ConfigParser(
        {
            "output_format": "markdown",
        }
    )
    converter = PdfConverter(
        config=config_parser.generate_config_dict(),
        artifact_dict=model_lst,
        processor_list=config_parser.get_processors(),
        renderer=config_parser.get_renderer(),
    )
    rendered = converter(pdf_path)
    full_text, _, images = text_from_rendered(rendered)
    if save_file:
        with open(pjoin(output_path, "source.md"), "w+", encoding="utf-8") as f:
            f.write(full_text)
        for filename, image in images.items():
            image_filepath = os.path.join(output_path, filename)
            image.save(image_filepath, "JPEG")
        with open(pjoin(output_path, "meta.json"), "w+") as f:
            f.write(json.dumps(rendered.metadata, indent=4))

    if not save_file:
        return full_text, rendered
    return full_text


def get_text_embedding(
    text: list[str], model: BGEM3FlagModel, batchsize: int = 32
) -> list[torch.Tensor]:
    """
    Generate text embeddings for a list of text strings.

    Args:
        text (list[str]): A list of text strings.
        model: The model used for generating embeddings.
        batchsize (int): The batch size for processing text.

    Returns:
        list: A list of text embeddings.
    """
    if isinstance(text, str):
        return torch.tensor(model.encode(text)["dense_vecs"]).to(model.device)
    result = []
    for i in range(0, len(text), batchsize):
        result.extend(
            torch.tensor(model.encode(text[i : i + batchsize])["dense_vecs"]).to(
                model.device
            )
        )
    return result


def get_image_embedding(
    image_dir: str, extractor, model, batchsize: int = 16
) -> dict[str, torch.Tensor]:
    """
    Generate image embeddings for images in a directory.

    Args:
        image_dir (str): The directory containing images.
        extractor: The feature extractor for images.
        model: The model used for generating embeddings.
        batchsize (int): The batch size for processing images.

    Returns:
        dict: A dictionary mapping image filenames to their embeddings.
    """
    transform = T.Compose(
        [
            T.Resize(int((256 / 224) * extractor.size["height"])),
            T.CenterCrop(extractor.size["height"]),
            T.ToTensor(),
            T.Normalize(mean=extractor.image_mean, std=extractor.image_std),
        ]
    )

    inputs = []
    embeddings = []
    images = [i for i in sorted(os.listdir(image_dir)) if is_image_path(i)]
    for file in images:
        image = Image.open(pjoin(image_dir, file)).convert("RGB")
        inputs.append(transform(image))
        if len(inputs) % batchsize == 0 or file == images[-1]:
            batch = {"pixel_values": torch.stack(inputs).to(model.device)}
            embeddings.extend(model(**batch).last_hidden_state.detach())
            inputs.clear()
    return {image: embedding.flatten() for image, embedding in zip(images, embeddings)}


def images_cosine_similarity(embeddings: list[torch.Tensor]) -> torch.Tensor:
    """
    Calculate the cosine similarity matrix for a list of embeddings.
    Args:
        embeddings (list[torch.Tensor]): A list of image embeddings.

    Returns:
        torch.Tensor: A NxN similarity matrix.
    """
    embeddings = [embedding for embedding in embeddings]
    sim_matrix = torch.zeros((len(embeddings), len(embeddings)))
    for i in range(len(embeddings)):
        for j in range(i + 1, len(embeddings)):
            sim_matrix[i, j] = sim_matrix[j, i] = torch.cosine_similarity(
                embeddings[i], embeddings[j], -1
            )
    return sim_matrix


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def average_distance(
    similarity: torch.Tensor, idx: int, cluster_idx: list[int]
) -> float:
    """
    Calculate the average distance between a point (idx) and a cluster (cluster_idx).

    Args:
        similarity (np.ndarray): The similarity matrix.
        idx (int): The index of the point.
        cluster_idx (list): The indices of the cluster.

    Returns:
        float: The average distance.
    """
    if idx in cluster_idx:
        return 0
    total_similarity = 0
    for idx_in_cluster in cluster_idx:
        total_similarity += similarity[idx, idx_in_cluster]
    return total_similarity / len(cluster_idx)


def get_cluster(similarity: np.ndarray, sim_bound: float = 0.65):
    """
    Cluster points based on similarity.

    Args:
        similarity (np.ndarray): The similarity matrix.
        sim_bound (float): The similarity threshold for clustering.

    Returns:
        list: A list of clusters.
    """
    num_points = similarity.shape[0]
    clusters = []
    sim_copy = deepcopy(similarity)
    added = [False] * num_points
    while True:
        max_avg_dist = sim_bound
        best_cluster = None
        best_point = None

        for c in clusters:
            for point_idx in range(num_points):
                if added[point_idx]:
                    continue
                avg_dist = average_distance(sim_copy, point_idx, c)
                if avg_dist > max_avg_dist:
                    max_avg_dist = avg_dist
                    best_cluster = c
                    best_point = point_idx

        if best_point is not None:
            best_cluster.append(best_point)
            added[best_point] = True
            similarity[best_point, :] = 0
            similarity[:, best_point] = 0
        else:
            if similarity.max() < sim_bound:
                break
            i, j = np.unravel_index(np.argmax(similarity), similarity.shape)
            clusters.append([int(i), int(j)])
            added[i] = True
            added[j] = True
            similarity[i, :] = 0
            similarity[:, i] = 0
            similarity[j, :] = 0
            similarity[:, j] = 0
    return clusters