File size: 11,855 Bytes
fcaa164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from collections import deque
from typing import Dict, List, Optional

from camel.agents import (
    ChatAgent,
    TaskCreationAgent,
    TaskPrioritizationAgent,
    TaskSpecifyAgent,
)
from camel.agents.chat_agent import ChatAgentResponse
from camel.generators import SystemMessageGenerator
from camel.logger import get_logger
from camel.messages import BaseMessage
from camel.prompts import TextPrompt
from camel.types import RoleType, TaskType

logger = get_logger(__name__)


class BabyAGI:
    r"""The BabyAGI Agent adapted from `"Task-driven Autonomous Agent"
    <https://github.com/yoheinakajima/babyagi>`_.

    Args:
        assistant_role_name (str): The name of the role played by the
            assistant.
        user_role_name (str): The name of the role played by the user.
        task_prompt (str, optional): A prompt for the task to be performed.
            (default: :obj:`""`)
        task_type (TaskType, optional): The type of task to perform.
            (default: :obj:`TaskType.AI_SOCIETY`)
        max_task_history (int): The maximum number of previous tasks
            information to include in the task agent.
            (default: :obj:10)
        assistant_agent_kwargs (Dict, optional): Additional arguments to pass
            to the assistant agent. (default: :obj:`None`)
        task_specify_agent_kwargs (Dict, optional): Additional arguments to
            pass to the task specify agent. (default: :obj:`None`)
        task_creation_agent_kwargs (Dict, optional): Additional arguments to
            pass to the task creation agent. (default: :obj:`None`)
        task_prioritization_agent_kwargs (Dict, optional): Additional arguments
            to pass to the task prioritization agent. (default: :obj:`None`)
        sys_msg_generator_kwargs (Dict, optional): Additional arguments to
            pass to the system message generator. (default: :obj:`None`)
        extend_task_specify_meta_dict (Dict, optional): A dict to extend the
            task specify meta dict with. (default: :obj:`None`)
        output_language (str, optional): The language to be output by the
            agents. (default: :obj:`None`)
        message_window_size (int, optional): The maximum number of previous
            messages to include in the context window. If `None`, no windowing
            is performed. (default: :obj:`None`)
    """

    def __init__(
        self,
        assistant_role_name: str,
        user_role_name: str,
        task_prompt: str = "",
        task_type: TaskType = TaskType.AI_SOCIETY,
        max_task_history: int = 10,
        assistant_agent_kwargs: Optional[Dict] = None,
        task_specify_agent_kwargs: Optional[Dict] = None,
        task_creation_agent_kwargs: Optional[Dict] = None,
        task_prioritization_agent_kwargs: Optional[Dict] = None,
        sys_msg_generator_kwargs: Optional[Dict] = None,
        extend_task_specify_meta_dict: Optional[Dict] = None,
        output_language: Optional[str] = None,
        message_window_size: Optional[int] = None,
    ) -> None:
        self.task_type = task_type
        self.task_prompt = task_prompt
        self.specified_task_prompt: TextPrompt
        self.init_specified_task_prompt(
            assistant_role_name,
            user_role_name,
            task_specify_agent_kwargs,
            extend_task_specify_meta_dict,
            output_language,
        )

        sys_msg_generator = SystemMessageGenerator(
            task_type=self.task_type, **(sys_msg_generator_kwargs or {})
        )

        init_assistant_sys_msg = sys_msg_generator.from_dicts(
            meta_dicts=[
                dict(
                    assistant_role=assistant_role_name,
                    user_role=user_role_name,
                    task=self.specified_task_prompt,
                )
            ],
            role_tuples=[
                (assistant_role_name, RoleType.ASSISTANT),
            ],
        )

        self.assistant_agent: ChatAgent
        self.assistant_sys_msg: Optional[BaseMessage]
        self.task_creation_agent: TaskCreationAgent
        self.task_prioritization_agent: TaskPrioritizationAgent
        self.init_agents(
            init_assistant_sys_msg[0],
            assistant_agent_kwargs,
            task_creation_agent_kwargs,
            task_prioritization_agent_kwargs,
            output_language,
            message_window_size,
        )

        self.subtasks: deque = deque([])
        self.solved_subtasks: List[str] = []
        self.MAX_TASK_HISTORY = max_task_history

    def init_specified_task_prompt(
        self,
        assistant_role_name: str,
        user_role_name: str,
        task_specify_agent_kwargs: Optional[Dict],
        extend_task_specify_meta_dict: Optional[Dict],
        output_language: Optional[str],
    ):
        r"""Use a task specify agent to generate a specified task prompt.
        Generated specified task prompt will be used to replace original
        task prompt. If there is no task specify agent, specified task
        prompt will not be generated.

        Args:
            assistant_role_name (str): The name of the role played by the
                assistant.
            user_role_name (str): The name of the role played by the user.
            task_specify_agent_kwargs (Dict, optional): Additional arguments
                to pass to the task specify agent.
            extend_task_specify_meta_dict (Dict, optional): A dict to extend
                the task specify meta dict with.
            output_language (str, optional): The language to be output by the
                agents.
        """
        task_specify_meta_dict = dict()
        if self.task_type in [TaskType.AI_SOCIETY, TaskType.MISALIGNMENT]:
            task_specify_meta_dict.update(
                dict(
                    assistant_role=assistant_role_name,
                    user_role=user_role_name,
                )
            )
        task_specify_meta_dict.update(extend_task_specify_meta_dict or {})
        task_specify_agent = TaskSpecifyAgent(
            task_type=self.task_type,
            output_language=output_language,
            **(task_specify_agent_kwargs or {}),
        )
        self.specified_task_prompt = task_specify_agent.run(
            self.task_prompt,
            meta_dict=task_specify_meta_dict,
        )

    def init_agents(
        self,
        init_assistant_sys_msg: BaseMessage,
        assistant_agent_kwargs: Optional[Dict],
        task_creation_agent_kwargs: Optional[Dict],
        task_prioritization_agent_kwargs: Optional[Dict],
        output_language: Optional[str],
        message_window_size: Optional[int] = None,
    ):
        r"""Initialize assistant and user agents with their system messages.

        Args:
            init_assistant_sys_msg (BaseMessage): Assistant agent's initial
                system message.
            assistant_agent_kwargs (Dict, optional): Additional arguments to
                pass to the assistant agent.
            task_creation_agent_kwargs (Dict, optional): Additional arguments
                to pass to the task creation agent.
            task_prioritization_agent_kwargs (Dict, optional): Additional
                arguments to pass to the task prioritization agent.
            output_language (str, optional): The language to be output by the
                agents.
            message_window_size (int, optional): The maximum number of previous
                messages to include in the context window. If `None`, no
                windowing is performed. (default: :obj:`None`)
        """
        self.assistant_agent = ChatAgent(
            init_assistant_sys_msg,
            output_language=output_language,
            message_window_size=message_window_size,
            **(assistant_agent_kwargs or {}),
        )
        self.assistant_sys_msg = self.assistant_agent.system_message
        self.assistant_agent.reset()

        self.task_creation_agent = TaskCreationAgent(
            objective=self.specified_task_prompt,
            role_name=getattr(self.assistant_sys_msg, 'role_name', None)
            or "assistant",
            output_language=output_language,
            message_window_size=message_window_size,
            **(task_creation_agent_kwargs or {}),
        )
        self.task_creation_agent.reset()

        self.task_prioritization_agent = TaskPrioritizationAgent(
            objective=self.specified_task_prompt,
            output_language=output_language,
            message_window_size=message_window_size,
            **(task_prioritization_agent_kwargs or {}),
        )
        self.task_prioritization_agent.reset()

    def step(self) -> ChatAgentResponse:
        r"""BabyAGI agent would pull the first task from the task list,
        complete the task based on the context, then creates new tasks and
        re-prioritizes the task list based on the objective and the result of
        the previous task. It returns assistant message.

        Returns:
            ChatAgentResponse: it contains the resulting assistant message,
            whether the assistant agent terminated the conversation,
            and any additional assistant information.

        """
        if not self.subtasks:
            new_subtask_list = self.task_creation_agent.run(task_list=[])
            prioritized_subtask_list = self.task_prioritization_agent.run(
                new_subtask_list
            )
            self.subtasks = deque(prioritized_subtask_list)

        task_name = self.subtasks.popleft()
        assistant_msg_msg = BaseMessage.make_user_message(
            role_name=getattr(self.assistant_sys_msg, 'role_name', None)
            or "assistant",
            content=f"{task_name}",
        )

        assistant_response = self.assistant_agent.step(assistant_msg_msg)
        assistant_msg = assistant_response.msgs[0]

        self.solved_subtasks.append(task_name)
        past_tasks = self.solved_subtasks + list(self.subtasks)

        new_subtask_list = self.task_creation_agent.run(
            task_list=past_tasks[-self.MAX_TASK_HISTORY :]
        )

        if new_subtask_list:
            self.subtasks.extend(new_subtask_list)
            prioritized_subtask_list = self.task_prioritization_agent.run(
                task_list=list(self.subtasks)[-self.MAX_TASK_HISTORY :]
            )
            self.subtasks = deque(prioritized_subtask_list)
        else:
            logger.info("no new tasks")
        assistant_response.info['task_name'] = task_name
        assistant_response.info['subtasks'] = list(self.subtasks)
        if not self.subtasks:
            terminated = True
            assistant_response.info['termination_reasons'] = (
                "All tasks are solved"
            )
            return ChatAgentResponse(
                msgs=[assistant_msg],
                terminated=terminated,
                info=assistant_response.info,
            )
        return ChatAgentResponse(
            msgs=[assistant_msg],
            terminated=assistant_response.terminated,
            info=assistant_response.info,
        )