Mqleet's picture
[update] templates
a3d3755
raw
history blame
9.99 kB
<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- saved from url=(0045)http://6.869.csail.mit.edu/fa19/schedule.html -->
<html xmlns="http://www.w3.org/1999/xhtml">
<link href="https://fonts.cdnfonts.com/css/chalkduster" rel="stylesheet">
<style>
@import url('https://fonts.cdnfonts.com/css/chalkduster');
</style>
<script src="https://appfl.github.io/FedCompass/sm/assets/teaser-data.js"></script>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>FedCompass: Efficient Cross-Silo Federated Learning on Heterogeneous Client Devices Using a Computing Power-Aware Scheduler</title>
<link href="style.css" rel="stylesheet" type="text/css">
<meta name="description"
content="Project page for &#39;FedCompass: Efficient Cross-Silo Federated Learning on Heterogeneous Client Devices Using a Computing Power-Aware Scheduler.&#39;">
<link rel="icon" href="asset/icon.png">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.0.0/dist/css/bootstrap.min.css"
integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">
</head>
<body>
<p class="title" style="text-align: center; margin-left: 10%; margin-right: 10%;">🧭 FedCompass: Efficient Cross-Silo Federated Learning on Heterogeneous Client Devices Using a Computing Power-Aware Scheduler</p>
<div style="text-align: center; font-size: 20pt; margin-bottom: 15px;">
<span><img src="asset/iclr.png" style="height: 36pt;" alt="">&nbsp;&nbsp;&nbsp;ICLR 2024</span>
</div>
<p class="author" style="text-align: center; margin-left: 10%; margin-right: 10%; font-size: large;">
<span class="author"><a target="_blank" href="https://www.linkedin.com/in/zilinghanli/">Zilinghan Li
</a>&nbsp;<sup>♠♡♢</sup></span>
<span class="author"><a target="_blank" href="https://www.linkedin.com/in/pranshu-chaturvedi-b71a51178/">Pranshu
Chaturvedi&nbsp;</a><sup>♠♡♢</sup></span>
<span class="author"><a target="_blank" href="https://www.linkedin.com/in/shilan-he/">Shilan
He&nbsp;</a><sup>♠♡♢</sup></span>
<span class="author">Han
Chen&nbsp;<sup></sup></span>
<span class="author"><a target="_blank" href="https://ggndpsngh.github.io/">Gagandeep
Singh&nbsp;</a><sup>♡♣</sup></span>
<span class="author"><a target="_blank" href="https://cs.illinois.edu/about/people/faculty/kindrtnk">Volodymyr
Kindratenko&nbsp;</a><sup>♡♢</sup></span>
<span class="author"><a target="_blank" href="https://www.anl.gov/profile/eliu-a-huerta">Eliu A
Huerta&nbsp;</a><sup>♠♡†</sup></span>
<span class="author"><a target="_blank" href="https://kibaekkim.github.io/">Kibaek
Kim&nbsp;</a><sup>♠†</sup></span>
<span class="author"><a target="_blank" href="https://www.anl.gov/profile/ravi-k-madduri">Ravi
Madduri&nbsp;</a><sup>♠†</sup></span>
</p>
<p class="author" style="text-align: center; margin-left: 22%; margin-right: 22%; font-size: medium; margin-top: 10pt;">
<span class="author"></a>&nbsp;<sup></sup> Argonne National Laboratory</span>
<span class="author"></a>&nbsp;<sup></sup> University of Illinois at Urbana-Champaign</a></span>
<span class="author"></a>&nbsp;<sup></sup> National Center for Supercomputing Applications</span>
<span class="author"></a>&nbsp;<sup></sup> VMWare Research</span>
<span class="author"></a>&nbsp;<sup></sup> The University of Chicago</a></span>
</p>
<p style="text-align: center; margin-top: 15pt;">
<a style="color: #990036" href="https://arxiv.org/abs/2309.14675" target="_blank">[Paper]</a>
<a style="color: #990036" href="https://openreview.net/forum?id=msXxrttLOi" target="_blank">[OpenReview]</a>
<a style="color: #990036" href="https://github.com/APPFL/FedCompass" tar>[Code]</a>
</p>
<div class="container">
&nbsp;
<p><span class="section"><b>Abstract</b></span> </p>
<p> Cross-silo federated learning offers a promising solution to collaboratively train
robust and generalized AI models without compromising the privacy of local
datasets, e.g., healthcare, financial, as well as scientific projects that lack a centralized data facility. Nonetheless, because of the disparity of computing resources
among different clients (i.e., device heterogeneity), synchronous federated learning algorithms suffer from degraded efficiency when waiting for straggler clients.
Similarly, asynchronous federated learning algorithms experience degradation in
the convergence rate and final model accuracy on non-identically and independently distributed (non-IID) heterogeneous datasets due to stale local models and
client drift. To address these limitations in cross-silo federated learning with
heterogeneous clients and data, we propose FedCompass, an innovative semiasynchronous federated learning algorithm with a computing power aware scheduler on the server side, which adaptively assigns varying amounts of training tasks
to different clients using the knowledge of the computing power of individual
clients. FedCompass ensures that multiple locally trained models from clients
are received almost simultaneously as a group for aggregation, effectively reducing the staleness of local models. At the same time, the overall training process remains asynchronous, eliminating prolonged waiting periods from straggler
clients. Using diverse non-IID heterogeneous distributed datasets, we demonstrate that FedCompass achieves faster convergence and higher accuracy than
other asynchronous algorithms while remaining more efficient than synchronous
algorithms when performing federated learning on heterogeneous clients.
<!-- <p class="section"><b>ICLR 2024 Video</b></p>
<div style="text-align: center">
<iframe width="75%" height="500px" src="https://www.youtube.com/embed/eemzbXXU59E" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
</div> -->
<p class="section">&nbsp;</p>
<p class="section" id="overview"><b>Overview</b></p>
<div style="text-align: center;">
<img src="asset/overview.png" style="width: 80%">
</div>
<p class="author" style="text-align: center; margin-left: 5%; margin-right: 5%; font-size: medium; font-weight: 550; margin-top: 2.5%;">
Figure: Overview of an example federated learning run using the Compass scheduler on five clients with the minimum number of local steps Qmin = 20 and maximum number of local steps Qmax = 100.
</p>
<p class="section">&nbsp;</p>
<p class="section" id="bibtex"><b>Bibtex</b></p>
<table border="0">
<tbody>
<pre style=" display: block;
background: #eee;
white-space: pre;
-webkit-overflow-scrolling: touch;
max-width: 100%;
min-width: 100px;
border-radius: 20px;
">
@article{li2023fedcompass,
title={FedCompass: Efficient Cross-Silo Federated Learning on Heterogeneous Client Devices using a Computing Power Aware Scheduler},
author={Li, Zilinghan and Chaturvedi, Pranshu and He, Shilan and Chen, Han and Singh, Gagandeep and Kindratenko, Volodymyr and Huerta, EA and Kim, Kibaek and Madduri, Ravi},
journal={arXiv preprint arXiv:2309.14675},
year={2023}
}
</pre>
</tbody>
</table>
</div>
</body>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-WLX2Z5QLG8');
</script>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
<script type="text/javascript">
$(document).ready(function () {
if (localStorage.getItem("my_app_name_here-quote-scroll") != null) {
$(window).scrollTop(localStorage.getItem("my_app_name_here-quote-scroll"));
}
$(window).on("scroll", function() {
localStorage.setItem("my_app_name_here-quote-scroll", $(window).scrollTop());
});
});
</script>
<script>
function prompt_on(prompt_element) {
prompt_element.classList.add("caption-active");
}
function prompt_off(prompt_element) {
prompt_element.classList.remove("caption-active");
}
function toggle_prompt(active_prompt_id, inactive_prompt_ids, result_id) {
let active_prompt = document.getElementById(active_prompt_id);
prompt_on(active_prompt);
for (let i = 0; i < inactive_prompt_ids.length; i++) {
let inactive_prompt = document.getElementById(inactive_prompt_ids[i]);
prompt_off(inactive_prompt);
}
let result = document.getElementById(result_id);
result.src = file_paths[active_prompt_id];
}
</script>
<script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha384-KJ3o2DKtIkvYIK3UENzmM7KCkRr/rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/popper.js@1.12.9/dist/umd/popper.min.js" integrity="sha384-ApNbgh9B+Y1QKtv3Rn7W3mgPxhU9K/ScQsAP7hUibX39j7fakFPskvXusvfa0b4Q" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@4.0.0/dist/js/bootstrap.min.js" integrity="sha384-JZR6Spejh4U02d8jOt6vLEHfe/JQGiRRSQQxSfFWpi1MquVdAyjUar5+76PVCmYl" crossorigin="anonymous"></script>
</html>