|
|
import logging |
|
|
from typing import Iterable |
|
|
|
|
|
import numpy |
|
|
from docling_core.types.doc import BoundingBox, CoordOrigin |
|
|
|
|
|
from docling.datamodel.base_models import OcrCell, Page |
|
|
from docling.datamodel.document import ConversionResult |
|
|
from docling.datamodel.pipeline_options import ( |
|
|
AcceleratorDevice, |
|
|
AcceleratorOptions, |
|
|
RapidOcrOptions, |
|
|
) |
|
|
from docling.datamodel.settings import settings |
|
|
from docling.models.base_ocr_model import BaseOcrModel |
|
|
from docling.utils.accelerator_utils import decide_device |
|
|
from docling.utils.profiling import TimeRecorder |
|
|
|
|
|
_log = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
class RapidOcrModel(BaseOcrModel): |
|
|
def __init__( |
|
|
self, |
|
|
enabled: bool, |
|
|
options: RapidOcrOptions, |
|
|
accelerator_options: AcceleratorOptions, |
|
|
): |
|
|
super().__init__(enabled=enabled, options=options) |
|
|
self.options: RapidOcrOptions |
|
|
|
|
|
self.scale = 3 |
|
|
|
|
|
if self.enabled: |
|
|
try: |
|
|
from rapidocr_onnxruntime import RapidOCR |
|
|
except ImportError: |
|
|
raise ImportError( |
|
|
"RapidOCR is not installed. Please install it via `pip install rapidocr_onnxruntime` to use this OCR engine. " |
|
|
"Alternatively, Docling has support for other OCR engines. See the documentation." |
|
|
) |
|
|
|
|
|
|
|
|
device = decide_device(accelerator_options.device) |
|
|
use_cuda = str(AcceleratorDevice.CUDA.value).lower() in device |
|
|
use_dml = accelerator_options.device == AcceleratorDevice.AUTO |
|
|
intra_op_num_threads = accelerator_options.num_threads |
|
|
|
|
|
self.reader = RapidOCR( |
|
|
text_score=self.options.text_score, |
|
|
cls_use_cuda=use_cuda, |
|
|
rec_use_cuda=use_cuda, |
|
|
det_use_cuda=use_cuda, |
|
|
det_use_dml=use_dml, |
|
|
cls_use_dml=use_dml, |
|
|
rec_use_dml=use_dml, |
|
|
intra_op_num_threads=intra_op_num_threads, |
|
|
print_verbose=self.options.print_verbose, |
|
|
det_model_path=self.options.det_model_path, |
|
|
cls_model_path=self.options.cls_model_path, |
|
|
rec_model_path=self.options.rec_model_path, |
|
|
rec_keys_path=self.options.rec_keys_path, |
|
|
) |
|
|
|
|
|
def __call__( |
|
|
self, conv_res: ConversionResult, page_batch: Iterable[Page] |
|
|
) -> Iterable[Page]: |
|
|
|
|
|
if not self.enabled: |
|
|
yield from page_batch |
|
|
return |
|
|
|
|
|
for page in page_batch: |
|
|
|
|
|
assert page._backend is not None |
|
|
if not page._backend.is_valid(): |
|
|
yield page |
|
|
else: |
|
|
with TimeRecorder(conv_res, "ocr"): |
|
|
ocr_rects = self.get_ocr_rects(page) |
|
|
|
|
|
all_ocr_cells = [] |
|
|
for ocr_rect in ocr_rects: |
|
|
|
|
|
if ocr_rect.area() == 0: |
|
|
continue |
|
|
high_res_image = page._backend.get_page_image( |
|
|
scale=self.scale, cropbox=ocr_rect |
|
|
) |
|
|
im = numpy.array(high_res_image) |
|
|
result, _ = self.reader( |
|
|
im, |
|
|
use_det=self.options.use_det, |
|
|
use_cls=self.options.use_cls, |
|
|
use_rec=self.options.use_rec, |
|
|
) |
|
|
|
|
|
del high_res_image |
|
|
del im |
|
|
|
|
|
if result is not None: |
|
|
cells = [ |
|
|
OcrCell( |
|
|
id=ix, |
|
|
text=line[1], |
|
|
confidence=line[2], |
|
|
bbox=BoundingBox.from_tuple( |
|
|
coord=( |
|
|
(line[0][0][0] / self.scale) + ocr_rect.l, |
|
|
(line[0][0][1] / self.scale) + ocr_rect.t, |
|
|
(line[0][2][0] / self.scale) + ocr_rect.l, |
|
|
(line[0][2][1] / self.scale) + ocr_rect.t, |
|
|
), |
|
|
origin=CoordOrigin.TOPLEFT, |
|
|
), |
|
|
) |
|
|
for ix, line in enumerate(result) |
|
|
] |
|
|
all_ocr_cells.extend(cells) |
|
|
|
|
|
|
|
|
page.cells = self.post_process_cells(all_ocr_cells, page.cells) |
|
|
|
|
|
|
|
|
if settings.debug.visualize_ocr: |
|
|
self.draw_ocr_rects_and_cells(conv_res, page, ocr_rects) |
|
|
|
|
|
yield page |
|
|
|