Mqleet's picture
[update] templates
a3d3755
<!doctype html>
<html>
<head>
<title>
Dynamic Sparsity in Machine Learning | NeurIPS 2024 Tutorial
</title>
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta charset="utf-8">
<link rel="stylesheet" href="assets/css/main.css">
<link rel="stylesheet" href="assets/css/syntax.css">
<!-- Use Atom -->
<link type="application/atom+xml" rel="alternate" href="https://dynamic-sparsity.github.io/feed.xml" title="Dynamic Sparsity in Machine Learning" />
<!-- Use RSS-2.0 -->
<!--<link href="https://dynamic-sparsity.github.io/rss-feed.xml" type="application/rss+xml" rel="alternate" title="Dynamic Sparsity in Machine Learning | NeurIPS 2024 Tutorial"/>
//-->
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=PT+Serif:400,400italic,700%7CPT+Sans:400">
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Source+Code+Pro">
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Quattrocento+Sans">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">
<script type="text/javascript" async
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [['$', '$'], ['\\(', '\\)']]
}
});
</script>
<!-- Google Analytics -->
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','//www.google-analytics.com/analytics.js','ga');
ga('create', '', 'auto');
ga('send', 'pageview');
</script>
<!-- Use Jekyll SEO plugin -->
<!-- Begin Jekyll SEO tag v2.8.0 -->
<title>Home | Dynamic Sparsity in Machine Learning</title>
<meta name="generator" content="Jekyll v3.10.0" />
<meta property="og:title" content="Home" />
<meta name="author" content="Edoardo Ponti and Andre Martins" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="NeurIPS 2024 Tutorial" />
<meta property="og:description" content="NeurIPS 2024 Tutorial" />
<link rel="canonical" href="index.html" />
<meta property="og:url" content="https://dynamic-sparsity.github.io/" />
<meta property="og:site_name" content="Dynamic Sparsity in Machine Learning" />
<meta property="og:type" content="website" />
<meta name="twitter:card" content="summary" />
<meta property="twitter:title" content="Home" />
<script type="application/ld+json">
{"@context":"https://schema.org","@type":"WebSite","author":{"@type":"Person","name":"Edoardo Ponti and Andre Martins"},"description":"NeurIPS 2024 Tutorial","headline":"Home","name":"Dynamic Sparsity in Machine Learning","url":"https://dynamic-sparsity.github.io/"}</script>
<!-- End Jekyll SEO tag -->
</head>
<body>
<div class="container">
<header class="header">
<h3 class="header-title">
<a href="index.html">Dynamic Sparsity in Machine Learning</a>
<br>
<small>Routing Information through Neural Pathways</small>
<br>
<small class="header-subtitle">NeurIPS 2024 Tutorial</small>
<div class="menu">
<nav class="menu-content">
<a href="https://dynamic-sparsity.github.io/authors.html">Authors</a>
<a href="index.html#slides">Slides</a>
<a href="index.html#notebooks">Notebooks</a>
<a href="https://dynamic-sparsity.github.io/program.html">Program</a>
<a href="https://dynamic-sparsity.github.io/biblio.html">Bibliography</a>
<a href="https://neurips.cc/virtual/2024/tutorial/99527">NeurIPS 2024</a>
</nav>
<nav class="social-icons">
</nav>
</div>
</h3>
</header>
<div class="content-container">
<section>
<h2><a id="summary">Summary</a></h2>
<p>
Recent advancements in machine learning have caused a shift from traditional sparse modeling, which focuses on static feature selection in neural representations, to dynamic sparsity, where different neural pathways are activated depending on the input.
This line of work is fueling, among other directions, new architectures for foundation models (such as sparse Mixtures of Experts). In this tutorial, we explore how
dynamic sparsity provides several advantages, especially: i) incorporating structural constraints in model representations and predictions; ii) performing conditional computation, adaptively adjusting the model architecture or representation size based on the input complexity; iii) routing to mixtures of experts to attain the performance of dense models while accelerating training and inference or to better generalize to new tasks.
This tutorial connects these lines of work through a unified perspective, including pedagogical materials with concrete examples in a wide array of applications (including Natural Language Processing, Computer Vision, and Reinforcement Learning) to familiarise general research audiences with this new, emerging paradigm and to foster future research.
</p>
</section>
<section>
<h2><a id="slides">Slides</a></h2>
<iframe src="assets/slides/slides.pdf" width="100%" height="600px">
This browser does not support PDFs. Please download the PDF to view it: <a href="assets/slides/slides.pdf">Download PDF</a>.
</iframe>
</section>
<section>
<h2><a id="notebooks">Notebooks</a></h2>
<div class="post-container" style="display: flex; align-items: flex-start; margin-bottom: 20px;">
<div class="image-container" style="margin-right: 20px;">
<img src="assets/img/sparse_transformations.ppm" alt="Sparse Transformations" style="max-width: 300px; height: auto;">
</div>
<div class="text-container">
<h1>
Sparse Transformations
</h1>
<h2>
André Martins
</h2>
<h4>
<a href="https://dynamic-sparsity.github.io/assets/notebooks/sparse_transformations.ipynb">Download Jupyter notebook</a>
</h4>
<h4>
<a href="https://colab.research.google.com/github/dynamic-sparsity/dynamic-sparsity.github.io/blob/main/docs/assets/notebooks/sparse_transformations.ipynb">Open in Colab</a>
</h4>
</div>
</div>
<div class="post-container" style="display: flex; align-items: flex-start; margin-bottom: 20px;">
<div class="image-container" style="margin-right: 20px;">
<img src="assets/img/smoe.png" alt="Sparse Mixtures of Experts" style="max-width: 300px; height: auto;">
</div>
<div class="text-container">
<h1>
Sparse Mixtures of Experts
</h1>
<h2>
Duarte Alves
</h2>
<h4>
<a href="https://dynamic-sparsity.github.io/assets/notebooks/moes.ipynb">Download Jupyter notebook</a>
</h4>
<h4>
<a href="https://colab.research.google.com/github/dynamic-sparsity/dynamic-sparsity.github.io/blob/main/docs/assets/notebooks/moes.ipynb">Open in Colab</a>
</h4>
</div>
</div>
<div class="post-container" style="display: flex; align-items: flex-start; margin-bottom: 20px;">
<div class="image-container" style="margin-right: 20px;">
<img src="assets/img/memory_heatmap.png" alt="Sparse Memory" style="max-width: 300px; height: auto;">
</div>
<div class="text-container">
<h1>
Sparse Memory
</h1>
<h2>
Piotr Nawrot
</h2>
<h4>
<a href="https://github.com/PiotrNawrot/nano-sparse-attention/blob/main/notebooks/tutorial.ipynb">Download Jupyter notebook</a>
</h4>
<h4>
<a href="https://colab.research.google.com/github/PiotrNawrot/nano-sparse-attention/blob/main/notebooks/tutorial.ipynb">Open in Colab</a>
</h4>
</div>
</div>
<div class="post-container" style="display: flex; align-items: flex-start; margin-bottom: 20px;">
<div class="image-container" style="margin-right: 20px;">
<img src="assets/img/hopfield.png" alt="Sparse Associative Memories" style="max-width: 300px; height: auto;">
</div>
<div class="text-container">
<h1>
Sparse Associative Memories
</h1>
<h2>
Saul Santos
</h2>
<h4>
<a href="https://dynamic-sparsity.github.io/assets/notebooks/hopfield.ipynb">Download Jupyter notebook</a>
</h4>
<h4>
<a href="https://colab.research.google.com/github/dynamic-sparsity/dynamic-sparsity.github.io/blob/main/docs/assets/notebooks/hopfield.ipynb">Open in Colab</a>
</h4>
</div>
</div>
<div class="post-container" style="display: flex; align-items: flex-start; margin-bottom: 20px;">
<div class="image-container" style="margin-right: 20px;">
<img src="assets/img/mixture-adapters.png" alt="Mixtures of Adapters" style="max-width: 300px; height: auto;">
</div>
<div class="text-container">
<h1>
Mixtures of Adapters
</h1>
<h2>
Alessandro Sordoni
</h2>
<h4>
<a href="https://github.com/sordonia/pg_mbc_arrow_tutorial/blob/master/pg_mbc_arrow_tutorial.ipynb">Download Jupyter notebook</a>
</h4>
<h4>
<a href="https://colab.research.google.com/github/sordonia/pg_mbc_arrow_tutorial/blob/master/pg_mbc_arrow_tutorial.ipynb">Open in Colab</a>
</h4>
</div>
</div>
</section>
</div>
<footer class="footer">
<div class="footer-description"><a href="index.html">Dynamic Sparsity in Machine Learning | NeurIPS 2024 Tutorial by Edoardo Ponti and Andre Martins</a></div>
</footer>
</div>
</body>
</html>