|
|
<!DOCTYPE html> |
|
|
<html> |
|
|
<head> |
|
|
<title>II-Bench</title> |
|
|
<style> |
|
|
.hidden { |
|
|
display: none; |
|
|
} |
|
|
</style> |
|
|
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script> |
|
|
<script src="https://kit.fontawesome.com/f8ddf9854a.js" crossorigin="anonymous"></script> |
|
|
<meta charset="utf-8"> |
|
|
<meta name="description" content="An Image Implication Understanding Benchmark for Multimodal Large Language Models"> |
|
|
<meta name="keywords" content="II-Bench, LMM, LMM Evaluation,MLLM, MLLM Evaluation, Multimodal large language model, Vision Language Model, Large Language Model, Large Multimodal Model, artificial intelligence, AI, AGI, artificial general intelligence"> |
|
|
<meta name="viewport" content="width=device-width, initial-scale=1"> |
|
|
<title> II-Bench: An Image Implication Understanding Benchmark for Multimodal Large Language Models</title> |
|
|
|
|
|
<link rel="icon" href="images/icon.png"> |
|
|
|
|
|
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet"> |
|
|
|
|
|
<link rel="stylesheet" href="static/css/bulma.min.css"> |
|
|
<link rel="stylesheet" href="static/css/bulma-carousel.min.css"> |
|
|
<link rel="stylesheet" href="static/css/bulma-slider.min.css"> |
|
|
<link rel="stylesheet" href="static/css/fontawesome.all.min.css"> |
|
|
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css"> |
|
|
<link rel="stylesheet" href="static/css/index.css"> |
|
|
<link rel="stylesheet" href="static/css/leaderboard.css"> |
|
|
|
|
|
|
|
|
|
|
|
<script type="text/javascript" src="static/js/sort-table.js" defer=""></script> |
|
|
|
|
|
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script> |
|
|
<script defer="" src="static/js/fontawesome.all.min.js"></script> |
|
|
<script src="static/js/bulma-carousel.min.js"></script> |
|
|
<script src="static/js/bulma-slider.min.js"></script> |
|
|
<script src="static/js/index.js"></script> |
|
|
<script src="static/js/question_card.js"></script> |
|
|
|
|
|
|
|
|
|
|
|
</head> |
|
|
<body class="II-Bench-container"> |
|
|
|
|
|
<nav class="navbar" role="navigation" aria-label="main navigation"> |
|
|
<div class="navbar-brand"> |
|
|
<a role="button" class="navbar-burger" aria-label="menu" aria-expanded="false"> |
|
|
<span aria-hidden="true"></span> |
|
|
<span aria-hidden="true"></span> |
|
|
<span aria-hidden="true"></span> |
|
|
</a> |
|
|
</div> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</nav> |
|
|
|
|
|
|
|
|
<section class="hero"> |
|
|
<div class="hero-body"> |
|
|
<div class="container is-max-desktop"> |
|
|
<div class="columns is-centered"> |
|
|
<div class="column has-text-centered"> |
|
|
<h1 class="title is-1 publication-title is-bold"> |
|
|
<img src="images/logo.png" style="width:1em;vertical-align: middle" alt="Logo"> |
|
|
<span class="II-Bench" style="vertical-align: middle">II-Bench</span> |
|
|
</h1> |
|
|
<h2 class="subtitle is-3 publication-subtitle"> |
|
|
An Image Implication Understanding Benchmark for Multimodal Large Language Models |
|
|
</h2> |
|
|
<p style="color: red; font-size: 1.5em; font-weight: bold;">NeurIPS 2024 D&B Track</p> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="column has-text-centered"> |
|
|
<div class="publication-links"> |
|
|
|
|
|
<span class="link-block"> |
|
|
|
|
|
<a href="https://arxiv.org/pdf/2406.05862" class="external-link button is-normal is-rounded"> |
|
|
<span class="icon"> |
|
|
<i class="fas fa-file-pdf" aria-hidden="true"></i> |
|
|
</span> |
|
|
<span>arXiv</span> |
|
|
</a> |
|
|
</span> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<span class="link-block"> |
|
|
<a href="https://huggingface.co/papers/2406.05862" class="external-link button is-normal is-rounded"> |
|
|
<span class="icon"> |
|
|
<p style="font-size:18px">🤗</p> |
|
|
</span> |
|
|
<span>HF Paper</span> |
|
|
</a> |
|
|
</span> |
|
|
<span class="link-block"> |
|
|
<a href="https://huggingface.co/datasets/m-a-p/II-Bench" class="external-link button is-normal is-rounded"> |
|
|
<span class="icon"> |
|
|
|
|
|
<p style="font-size:18px">🤗</p> |
|
|
|
|
|
</span> |
|
|
<span>Dataset</span> |
|
|
</a> |
|
|
</span> |
|
|
<span class="link-block"> |
|
|
<a href="https://github.com/II-Bench/II-Bench" class="external-link button is-normal is-rounded"> |
|
|
<span class="icon"> |
|
|
<i class="fab fa-github" aria-hidden="true"></i> |
|
|
</span> |
|
|
<span>Code</span> |
|
|
</a> |
|
|
</span> |
|
|
|
|
|
|
|
|
|
|
|
<span class="link-block"> |
|
|
<a href="index.html#leaderboard" |
|
|
class="external-link button is-normal is-rounded"> |
|
|
<span class="icon has-text-white"> |
|
|
|
|
|
<p style="font-size:18px">🏆</p> |
|
|
</span> |
|
|
<span>Leaderboard</span> |
|
|
</a> |
|
|
</span> |
|
|
|
|
|
|
|
|
|
|
|
<span class="link-block"> |
|
|
<a href="https://eval.ai/web/challenges/challenge-page/2334/overview" |
|
|
class="external-link button is-normal is-rounded"> |
|
|
<span class="icon has-text-white"> |
|
|
<p style="font-size:18px">📖</p> |
|
|
|
|
|
</span> |
|
|
<span>EvalAI</span> |
|
|
</a> |
|
|
</span> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</div> |
|
|
|
|
|
</div> |
|
|
</h2></div> |
|
|
</div> |
|
|
</div> |
|
|
</div> |
|
|
</section> |
|
|
<style> |
|
|
.center { |
|
|
display: block; |
|
|
margin-left: auto; |
|
|
margin-right: auto; |
|
|
width: 80%; |
|
|
} |
|
|
</style> |
|
|
<section class="hero teaser"> |
|
|
<div class="container is-max-desktop"> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="content has-text-centered"> |
|
|
<img src="images/composition.jpg" alt="geometric reasoning" width="40%"> |
|
|
<p> Overview of II-Bench: II-Bench comprises 1,222 images, spanning six domains: life, art, society, psychology, environment and others.</p> |
|
|
</div> |
|
|
|
|
|
</div> |
|
|
|
|
|
</section> |
|
|
|
|
|
<section class="section"> |
|
|
<div class="container" style="margin-bottom: 2vh;"> |
|
|
|
|
|
<div class="columns is-centered has-text-centered"> |
|
|
<div class="column is-four-fifths"> |
|
|
<h2 class="title ">🔔News</h2> |
|
|
<div class="content has-text-justified"> |
|
|
<p> |
|
|
<b>🔥[2024-09-26]: II-Bench has been accepted to the NeurIPS 2024 Datasets and Benchmarks.</b> |
|
|
</p> |
|
|
<p> |
|
|
<b>🔥[2024-06-26]: We released <a href="https://eval.ai/web/challenges/challenge-page/2334/overview">II-Bench</a> challenge on <a href="https://eval.ai/">EvalAI</a>. You can submit your results and evaluate them there.😆</b> |
|
|
</p> |
|
|
<p> |
|
|
<b>🌟[2024-06-25]: We added the results of latest Claude 3.5 Sonnet, which achieved the SOTA performance among all models so far.</b> |
|
|
</p> |
|
|
</div> |
|
|
<h2 class="title is-3">Introduction</h2> |
|
|
<div class="content has-text-justified"> |
|
|
<p> |
|
|
The rapid advancements in the development of multimodal large language models (MLLMs) have consistently led to new breakthroughs on various benchmarks. |
|
|
In response, numerous challenging and comprehensive benchmarks have been proposed to more accurately assess the capabilities of MLLMs. |
|
|
|
|
|
However, there is a dearth of exploration of the higher-order perceptual capabilities of MLLMs. |
|
|
To fill this gap, we propose the <b>I</b>mage <b>I</b>mplication understanding <b>Bench</b>mark, <b>II-Bench</b>, which aims to evaluate the model's higher-order perception of images. |
|
|
|
|
|
Our extensive experiments on 20 MLLMs reveal significant performance gaps between models and humans, particularly in abstract domains like Art and Psychology. |
|
|
Our findings highlight the need for improved emotional understanding in MLLMs and suggest that incorporating emotional polarity information can enhance model performance. |
|
|
II-Bench aims to inspire advancements in multimodal AI research and foster the development of more sophisticated artificial general intelligence (AGI). |
|
|
|
|
|
</p> |
|
|
</div> |
|
|
</div> |
|
|
</div> |
|
|
|
|
|
</div> |
|
|
</section> |
|
|
|
|
|
|
|
|
<section class="hero is-light is-small"> |
|
|
<div class="hero-body has-text-centered"> |
|
|
<h1 class="title is-1 mmmu"> |
|
|
<img src="images/logo.png" style="width:1em;vertical-align: middle" alt="Logo"> |
|
|
<span class="mmmu" style="vertical-align: middle">II-Benchmark</span> |
|
|
</h1> |
|
|
</div> |
|
|
</section> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<section class="section"> |
|
|
<div class="container"> |
|
|
<div class="columns is-centered has-text-centered"> |
|
|
|
|
|
<div class="column is-four-fifths"> |
|
|
<h2 class="title is-3">Overview</h2> |
|
|
<div class="content has-text-justified"> |
|
|
<p> |
|
|
We introduce the <b>I</b>mage <b>I</b>mplication Understanding <b>Bench</b>mark <b>II-Bench</b>, a new benchmark measuring the higher-order perceptual, reasoning and comprehension abilities of MLLMs when presented with complex implication images. |
|
|
These images, including abstract artworks, comics and posters, possess visual implications that require an understanding of visual details and reasoning ability. |
|
|
II-Bench reveals whether current MLLMs, leveraging their inherent comprehension abilities, can accurately decode the metaphors embedded within the complex and abstract information presented in these images. |
|
|
<img src="images/II-bench-sample.jpg" alt="algebraic reasoning" class="center"> |
|
|
<br> |
|
|
</p><p> |
|
|
II-Bench contains a total of 1,222 various images. |
|
|
These images are manually collected and annotated by 50 undergraduate students from various disciplines and institutions, with sources from multiple renowned illustration websites. |
|
|
Each image is manually designed with one to three multiple-choice questions, each with six options and only one correct answer. |
|
|
The questions cover the metaphors, symbolism, and detailed understanding of the images. |
|
|
The benchmark includes a total of 1,434 multiple-choice questions, with 1,399 questions used to construct the test set and 35 questions used to construct the development and validation set for few-shot tasks. |
|
|
|
|
|
</p></div> |
|
|
</div> |
|
|
</div> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="columns is-centered m-6"> |
|
|
<div class="column is-full has-text-centered content"> |
|
|
<h2 class="title is-3">Statistics</h2> |
|
|
<div id="results-carousel" class="carousel results-carousel"> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="images/II-bench-type.png" alt="algebraic reasoning" width="90%"> |
|
|
<p> II-Bench specific image type and domain statistics.</p> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="images/statics.png" alt="arithmetic reasoning" width="90%"> |
|
|
<p> Key statistics of the II-Bench benchmark</p> |
|
|
</div> |
|
|
</div> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</div> |
|
|
</div> |
|
|
</div> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</div> |
|
|
</section> |
|
|
|
|
|
|
|
|
<section class="hero is-light is-small"> |
|
|
<div class="hero-body has-text-centered"> |
|
|
<h1 class="title is-1 mmmu">Experiment Results</h1> |
|
|
</div> |
|
|
</section> |
|
|
<section class="section"> |
|
|
<div class="container"> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="columns is-centered m-6"> |
|
|
<div class="column is-full has-text-centered content"> |
|
|
<h2 class="title is-3" id="leaderboard">Leaderboard</h2> |
|
|
<div class="content"> |
|
|
<div class="content has-text-justified"> |
|
|
<p> |
|
|
We conduct experiments on II-Bench using both open-source and closed-source MLLMs. For |
|
|
each model, we employ eight different settings: 1-shot, 2-shot, 3-shot, zero-shot (None), CoT, |
|
|
Domain, Emotion and Rhetoric. "Emotion" denotes prompts where the model is informed about the |
|
|
emotional polarity of the images(e.g., positive, negative), "Domain" involves adding information |
|
|
about the image’s domain (e.g., life, environment) to the prompt, and "Rhetoric" signifies prompt |
|
|
with information about the rhetorical devices used in the image (e.g., metaphor, personification), |
|
|
while "None" indicates the use of standard prompts without any additional information. Uniform |
|
|
prompts are applied across all MLLMs. |
|
|
</p> |
|
|
</div> |
|
|
|
|
|
<div class="model-labels-container"> |
|
|
|
|
|
|
|
|
|
|
|
<span class="leaderboard-label" style="background-color: #e4efdc;">Open-Source</span> |
|
|
<span class="leaderboard-label" style="background-color: #e0ebf3;">Human</span> |
|
|
<span class="leaderboard-label" style="background-color: #def9cb;">Proprietary</span> |
|
|
|
|
|
</div> |
|
|
<table id="table1" class="js-sort-table"> |
|
|
<tbody><tr> |
|
|
<td class="js-sort-number"><strong>Reset</strong></td> |
|
|
<td class="js-sort-number"><strong>Overall</strong></td> |
|
|
<td class="js-sort-number"><strong>Life</strong></td> |
|
|
<td class="js-sort-number"><strong>Art</strong></td> |
|
|
<td class="js-sort-number"><strong>Society</strong></td> |
|
|
<td class="js-sort-number"><strong>Psychology</strong></td> |
|
|
<td class="js-sort-number"><strong>Environment</strong></td> |
|
|
<td class="js-sort-number"><strong>Others</strong></td> |
|
|
<td class="js-sort-number"><strong>Positive</strong></td> |
|
|
<td class="js-sort-number"><strong>Neutral</strong></td> |
|
|
<td class="js-sort-number"><strong>Negative</strong></td> |
|
|
</tr> |
|
|
|
|
|
<tr style="background-color: #def9cb;"> |
|
|
<td style="text-align: left;"> |
|
|
<b> Claude 3.5 sonnet </b> |
|
|
</td> |
|
|
<td> <b>80.9</b> </td> |
|
|
<td> <b>81.4</b> </td> |
|
|
|
|
|
<td> <b>77.6</b> </td> |
|
|
<td> <b>80.9</b> </td> |
|
|
<td> <b>78.3</b> </td> |
|
|
<td> <b>86.3</b> </td> |
|
|
<td style="text-decoration: underline;"> 83.1 </td> |
|
|
<td> <b>81.1</b> </td> |
|
|
<td> <b>80.9</b> </td> |
|
|
<td > <b>80.9</b> </td> |
|
|
</tr> |
|
|
|
|
|
<tr style="background-color: #def9cb;"> |
|
|
<td style="text-align: left;"> |
|
|
<b> Qwen-VL-MAX </b> |
|
|
</td> |
|
|
<td style="text-decoration: underline;"> 74.8 </td> |
|
|
<td style="text-decoration: underline;"> 74.7 </td> |
|
|
|
|
|
<td> 71.8 </td> |
|
|
<td style="text-decoration: underline;"> 74.6 </td> |
|
|
<td style="text-decoration: underline;"> 73.0 </td> |
|
|
<td> 76.5 </td> |
|
|
<td> <b>84.6</b> </td> |
|
|
<td style="text-decoration: underline;"> 80.1</td> |
|
|
<td style="text-decoration: underline;"> 74.5 </td> |
|
|
<td> 72.9 </td> |
|
|
</tr> |
|
|
|
|
|
<tr style="background-color: #def9cb;"> |
|
|
<td style="text-align: left;"> |
|
|
<b> Gemini-1.5 Pro </b> |
|
|
</td> |
|
|
<td> 73.9 </td> |
|
|
<td> 73.7 </td> |
|
|
|
|
|
<td style="text-decoration: underline;"> 74.1 </td> |
|
|
<td> 74.4 </td> |
|
|
<td> 63.2 </td> |
|
|
<td style="text-decoration: underline;"> 80.4 </td> |
|
|
<td style="text-decoration: underline;"> 83.1 </td> |
|
|
<td style="text-decoration: underline;"> 80.1 </td> |
|
|
<td> 70.8 </td> |
|
|
<td style="text-decoration: underline;"> 75.4</td> |
|
|
</tr> |
|
|
|
|
|
<tr style="background-color: #def9cb;"> |
|
|
<td style="text-align: left;"> |
|
|
<b> GPT-4o </b> |
|
|
</td> |
|
|
<td> 72.6 </td> |
|
|
<td> 72.5 </td> |
|
|
|
|
|
<td> 72.9 </td> |
|
|
<td> 73.3 </td> |
|
|
<td > 68.4 </td> |
|
|
<td> 76.5 </td> |
|
|
<td> 75.4 </td> |
|
|
<td> 78.6 </td> |
|
|
<td> 71.2 </td> |
|
|
<td> 72.5 </td> |
|
|
</tr> |
|
|
|
|
|
<tr style="background-color: #def9cb;"> |
|
|
<td style="text-align: left;"> |
|
|
<b> GPT-4V </b> |
|
|
</td> |
|
|
<td> 65.9 </td> |
|
|
<td> 65.0 </td> |
|
|
|
|
|
<td> 69.4 </td> |
|
|
<td> 65.3 </td> |
|
|
<td> 59.9 </td> |
|
|
<td> 76.5 </td> |
|
|
<td> 80.0 </td> |
|
|
<td> 69.4 </td> |
|
|
<td> 66.0 </td> |
|
|
<td> 64.0 </td> |
|
|
</tr> |
|
|
|
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b> LLaVA-1.6-34B </b> |
|
|
</td> |
|
|
<td> <b>73.8</b> </td> |
|
|
<td> <b>73.8</b> </td> |
|
|
|
|
|
<td style="text-decoration: underline;"> 71.8 </td> |
|
|
<td> <b>73.3</b> </td> |
|
|
<td> <b>71.1</b> </td> |
|
|
<td style="text-decoration: underline;"> 78.4 </td> |
|
|
<td style="text-decoration: underline;"> 81.5 </td> |
|
|
<td> <b>79.1</b> </td> |
|
|
<td> <b>72.9</b> </td> |
|
|
<td> <b>72.9</b> </td> |
|
|
</tr> |
|
|
|
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b> CogVLM2-Llama3-Chat </b> |
|
|
</td> |
|
|
<td style="text-decoration: underline;"> 70.3 </td> |
|
|
<td style="text-decoration: underline;"> 68.9 </td> |
|
|
|
|
|
<td> 68.2 </td> |
|
|
<td style="text-decoration: underline;"> 70.9 </td> |
|
|
<td style="text-decoration: underline;"> 67.8 </td> |
|
|
<td> 72.5 </td> |
|
|
<td> <b>86.2</b> </td> |
|
|
<td> 69.9 </td> |
|
|
<td style="text-decoration: underline;"> 71.1 </td> |
|
|
<td style="text-decoration: underline;"> 69.1 </td> |
|
|
</tr> |
|
|
|
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b> MiniCPM-Llama3-2.5 </b> |
|
|
</td> |
|
|
<td>69.4</td> |
|
|
<td>68.4</td> |
|
|
|
|
|
<td style="text-decoration: underline;"> 71.8 </td> |
|
|
<td>69.4</td> |
|
|
<td>64.5</td> |
|
|
<td><b>80.4</b></td> |
|
|
<td>78.5</td> |
|
|
<td style="text-decoration: underline;"> 75.0 </td> |
|
|
<td>69.3</td> |
|
|
<td>66.9</td> |
|
|
</tr> |
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b>Yi-VL-34B-Chat</b> |
|
|
</td> |
|
|
<td>67.9</td> |
|
|
<td>67.5</td> |
|
|
|
|
|
<td>70.6</td> |
|
|
<td>67.7</td> |
|
|
<td>63.8</td> |
|
|
<td>70.6</td> |
|
|
<td>76.9</td> |
|
|
<td>74.0</td> |
|
|
<td>68.2</td> |
|
|
<td>64.5</td> |
|
|
</tr> |
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b>Idefics2-8B</b> |
|
|
</td> |
|
|
<td>67.7</td> |
|
|
<td>67.2</td> |
|
|
|
|
|
<td><b>74.1</b></td> |
|
|
<td>67.7</td> |
|
|
<td>62.5</td> |
|
|
<td>74.5</td> |
|
|
<td>70.8</td> |
|
|
<td>68.9</td> |
|
|
<td>67.0</td> |
|
|
<td>68.4</td> |
|
|
</tr> |
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b>InternVL-Chat-1.5</b> |
|
|
</td> |
|
|
<td>66.3</td> |
|
|
<td>63.6</td> |
|
|
|
|
|
<td>65.9</td> |
|
|
<td>68.5</td> |
|
|
<td>65.8</td> |
|
|
<td>64.7</td> |
|
|
<td>76.9</td> |
|
|
<td>73.5</td> |
|
|
<td>65.4</td> |
|
|
<td>64.5</td> |
|
|
</tr> |
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b>InternLM-XComposer2-VL</b> |
|
|
</td> |
|
|
<td>62.1</td> |
|
|
<td>61.7</td> |
|
|
|
|
|
<td>62.4</td> |
|
|
<td>62.3</td> |
|
|
<td>58.6</td> |
|
|
<td>70.6</td> |
|
|
<td>66.2</td> |
|
|
<td>65.8</td> |
|
|
<td>63.0</td> |
|
|
<td>58.7</td> |
|
|
</tr> |
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b>Yi-VL-6B-Chat</b> |
|
|
</td> |
|
|
<td>61.3</td> |
|
|
<td>60.9</td> |
|
|
|
|
|
<td>63.5</td> |
|
|
<td>60.7</td> |
|
|
<td>56.6</td> |
|
|
<td>66.7</td> |
|
|
<td>72.3</td> |
|
|
<td>61.7</td> |
|
|
<td>61.7</td> |
|
|
<td>61.1</td> |
|
|
</tr> |
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b>DeepSeek-VL-Chat-7B</b> |
|
|
</td> |
|
|
<td>60.3</td> |
|
|
<td>59.0</td> |
|
|
|
|
|
<td>58.8</td> |
|
|
<td>58.4</td> |
|
|
<td>61.8</td> |
|
|
<td>68.6</td> |
|
|
<td>76.9</td> |
|
|
<td>65.8</td> |
|
|
<td>60.1</td> |
|
|
<td>58.0</td> |
|
|
</tr> |
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b>BLIP-2 FLAN-T5-XXL</b> |
|
|
</td> |
|
|
<td>57.8</td> |
|
|
<td>57.1</td> |
|
|
|
|
|
<td>63.5</td> |
|
|
<td>57.0</td> |
|
|
<td>53.3</td> |
|
|
<td>66.7</td> |
|
|
<td>66.2</td> |
|
|
<td>67.9</td> |
|
|
<td>57.2</td> |
|
|
<td>54.3</td> |
|
|
</tr> |
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b>Mantis-8B-siglip-Llama3</b> |
|
|
</td> |
|
|
<td>57.5</td> |
|
|
<td>56.8</td> |
|
|
|
|
|
<td>61.2</td> |
|
|
<td>57.5</td> |
|
|
<td>53.9</td> |
|
|
<td>64.7</td> |
|
|
<td>61.5</td> |
|
|
<td>59.2</td> |
|
|
<td>58.0</td> |
|
|
<td>55.6</td> |
|
|
</tr> |
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b>InstructBLIP-T5-XXL</b> |
|
|
</td> |
|
|
<td>56.7</td> |
|
|
<td>56.2</td> |
|
|
|
|
|
<td>58.8</td> |
|
|
<td>58.6</td> |
|
|
<td>45.4</td> |
|
|
<td>64.7</td> |
|
|
<td>64.6</td> |
|
|
<td>63.3</td> |
|
|
<td>56.1</td> |
|
|
<td>54.6</td> |
|
|
</tr> |
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b>Qwen-VL-Chat</b> |
|
|
</td> |
|
|
<td>53.4</td> |
|
|
<td>53.2</td> |
|
|
|
|
|
<td>49.4</td> |
|
|
<td>52.1</td> |
|
|
<td>50.0</td> |
|
|
<td>60.8</td> |
|
|
<td>72.3</td> |
|
|
<td>56.1</td> |
|
|
<td>52.6</td> |
|
|
<td>53.6</td> |
|
|
</tr> |
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b>mPLUGw-OWL2</b> |
|
|
</td> |
|
|
<td>53.2</td> |
|
|
<td>54.0</td> |
|
|
|
|
|
<td>56.5</td> |
|
|
<td>50.5</td> |
|
|
<td>52.0</td> |
|
|
<td>60.8</td> |
|
|
<td>56.9</td> |
|
|
<td>55.6</td> |
|
|
<td>52.6</td> |
|
|
<td>53.1</td> |
|
|
</tr> |
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b>BLIP-2 FLAN-T5-XL</b> |
|
|
</td> |
|
|
<td>52.8</td> |
|
|
<td>53.0</td> |
|
|
|
|
|
<td>58.8</td> |
|
|
<td>52.5</td> |
|
|
<td>42.8</td> |
|
|
<td>64.7</td> |
|
|
<td>58.5</td> |
|
|
<td>56.1</td> |
|
|
<td>52.9</td> |
|
|
<td>51.0</td> |
|
|
</tr> |
|
|
<tr style="background-color: #e4efdc;"> |
|
|
<td style="text-align: left;"> |
|
|
<b>InstructBLIP-T5-XL</b> |
|
|
</td> |
|
|
<td>47.3</td> |
|
|
<td>45.6</td> |
|
|
|
|
|
<td>48.2</td> |
|
|
<td>48.8</td> |
|
|
<td>44.7</td> |
|
|
<td>52.9</td> |
|
|
<td>50.8</td> |
|
|
<td>46.9</td> |
|
|
<td>48.3</td> |
|
|
<td>45.4</td> |
|
|
</tr> |
|
|
|
|
|
|
|
|
<tr style="background-color: #e0ebf3;"> |
|
|
<td style="text-align: left;"> |
|
|
<b> Human_avg </b> |
|
|
</td> |
|
|
<td> 90.3 </td> |
|
|
<td> 90.0 </td> |
|
|
|
|
|
<td> 88.2 </td> |
|
|
<td> 91.4 </td> |
|
|
<td> 86.6 </td> |
|
|
<td> 96.1 </td> |
|
|
<td> 92.3 </td> |
|
|
<td> 84.7 </td> |
|
|
<td> 89.1 </td> |
|
|
<td> 92.2 </td> |
|
|
</tr> |
|
|
<tr style="background-color: #e0ebf3;"> |
|
|
<td style="text-align: left;"> |
|
|
<b> Human_best </b> |
|
|
</td> |
|
|
<td> <b>98.2</b> </td> |
|
|
<td> <b>97.9</b> </td> |
|
|
|
|
|
<td> <b>98.8</b> </td> |
|
|
<td> <b>98.3</b> </td> |
|
|
<td> <b>97.4</b> </td> |
|
|
<td> <b>100.0</b> </td> |
|
|
<td> <b>100.0</b> </td> |
|
|
<td> <b>98.0</b> </td> |
|
|
<td> <b>98.0</b> </td> |
|
|
<td> <b>98.8</b> </td> |
|
|
</tr> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</tbody></table> |
|
|
|
|
|
<p> Overall results of different MLLMs and humans on different domains and emotions. The |
|
|
best-performing model in each category is <b>in-bold</b>, and the second best is <u>underlined</u>. |
|
|
</p> |
|
|
</div> |
|
|
</div> |
|
|
</div> |
|
|
|
|
|
<div class="columns is-centered m-6"> |
|
|
<div class="column is-full has-text-centered content"> |
|
|
<h2 class="title is-3">Different Prompt Skills</h2> |
|
|
<div class="content has-text-justified"> |
|
|
<p> |
|
|
<b>Analysis of Chain-of-Thought (CoT)</b>. The results indicate that CoT had no significant effect on improving accuracy. |
|
|
In some cases, particularly with smaller open-source models, the accuracy even declined when CoT was used. |
|
|
For example, CogVLM2-Llama3-Chat-19B scores 70.3% without CoT and drops to 69.3% with CoT, InternVL-Chat-1.5 scores 66.3% and 63.3% as the same. |
|
|
These findings align with other benchmarks, which show that CoT is not particularly effective for image understanding tasks. |
|
|
</p> |
|
|
<p> |
|
|
<b>Analysis of Different Types and Domains</b>. To evaluate the impact of different label information on model accuracy, we conduct an ablation study by providing corresponding label information (Emotion, Domain, Rhetoric) for the images in the prompt. |
|
|
This outcome is consistent with the human perspective of image metaphor comprehension. |
|
|
Emotion labels likely provide more intuitive and salient cues that align closely with human interpretative processes, thereby facilitating better model performance. |
|
|
In contrast, Domain and Rhetoric labels, while still beneficial, are not as immediately intuitive or universally applicable, thus resulting in slightly lower effectiveness in improving model accuracy. |
|
|
At the same time, from the perspective of model training, the model has a normal understanding of emotion, unlike the specific nouns we define ourselves in the Rhetoric and Domain labels. |
|
|
The model does not see many descriptions of such specific nouns during pre-training, which does not help improve accuracy. |
|
|
</p> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="images/prompt.png" width="75%"> |
|
|
<p>Overall results of different prompts on II-Bench.The label(Emotion, Domain, Rhetoric) means providing corresponding information for the images in the prompt. |
|
|
The best-performing model in each category is <b>in-bold</b>, and the second best is <u>underlined</u> .</p> |
|
|
</div> |
|
|
|
|
|
<p> |
|
|
<b>Analysis of Few-shot Examples.</b>. Specifically, the performance tends to drop as more examples are provided. |
|
|
This can be attributed to the models’ inferior multi-image capabilities compared to their single-image capabilities, leading to a decline in accuracy with an increasing number of shots. |
|
|
Additionally, as the number of shots increases, the input length becomes longer, and the model’s long text ability is insufficient, resulting in poor long context performance. |
|
|
An example is Qwen-VL-Max, where inputs exceeding 6,000 tokens cause errors. |
|
|
Moreover, chat models generally exhibit good instruction following ability, reducing the necessity for few-shot examples. |
|
|
</p> |
|
|
</div> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="images/shot.png" width="73%"> |
|
|
<p>Few-shot results of different models on the II-Bench. * means exceeds the context length.</p> |
|
|
</div> |
|
|
|
|
|
</div> |
|
|
</div> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<div class="columns is-centered m-6"> |
|
|
<div class="column is-full has-text-centered content"> |
|
|
<h2 class="title is-3">Error Analysis</h2> |
|
|
<div class="content has-text-justified"> |
|
|
<p> |
|
|
In order to perform a comprehensive error analysis of GPT-4V’s performance on II-Bench, we randomly select 100 erroneous samples from each domain, in proportion to their representation in the dataset. |
|
|
These samples are meticulously analyzed by expert annotators. |
|
|
GPT-4V’s errors can be categorized into the following types: Metaphorical Misunderstanding, Detail Misunderstanding, Detail Ignorance, Surface-Level Interpretation, Reasoning Error, Reject to Answer and Answer Extraction Error. |
|
|
</p> |
|
|
</div> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="images/error.png" alt="error distribution" width="50%"> |
|
|
<p>GPT-4V error response distribution.</p> |
|
|
</div> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
</div> |
|
|
</div> |
|
|
|
|
|
|
|
|
|
|
|
<div class="columns is-centered m-6"> |
|
|
<div class="column is-full has-text-centered content"> |
|
|
<h2 class="title is-3" id="examples">Error Examples</h2> |
|
|
<div id="results-carousel" class="carousel results-carousel"> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/7.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/8.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/9.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/10.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/11.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/12.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/13.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/14.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/15.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/16.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/17.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/18.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/19.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/20.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/28.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/29.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/30.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/31.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/32.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/33.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/34.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/35.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/36.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/37.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/38.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/39.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/40.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/45.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/46.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/47.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/48.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/49.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/54.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/55.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/56.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/57.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/61.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/62.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/63.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/64.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/65.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/66.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/67.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/68.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/69.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/74.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/75.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/76.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="error/77.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
|
|
|
</div> |
|
|
</div> |
|
|
</div> |
|
|
|
|
|
|
|
|
<div class="columns is-centered m-6"> |
|
|
<div class="column is-full has-text-centered content"> |
|
|
<h2 class="title is-3">Correct Examples</h2> |
|
|
<div id="results-carousel" class="carousel results-carousel"> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/1.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/2.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/3.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/4.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/5.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/6.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/21.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/22.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/23.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/24.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/25.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/26.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/27.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/41.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/42.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/43.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/44.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/50.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/51.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/52.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/53.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/58.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/59.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/60.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/70.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/71.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/72.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
<div class="box m-5"> |
|
|
<div class="content has-text-centered"> |
|
|
<img src="right/73.png" alt="grade-lv" width="60%"> |
|
|
</div> |
|
|
</div> |
|
|
|
|
|
</div> |
|
|
</div> |
|
|
</div> |
|
|
|
|
|
|
|
|
|
|
|
</div> |
|
|
</section> |
|
|
|
|
|
|
|
|
|
|
|
<section class="section" id="BibTeX"> |
|
|
<div class="container is-max-desktop content"> |
|
|
<h2 class="title is-3 has-text-centered">BibTeX</h2> |
|
|
<pre><code>@article{liu2024ii, |
|
|
title={II-Bench: An Image Implication Understanding Benchmark for Multimodal Large Language Models}, |
|
|
author={Liu, Ziqiang and Fang, Feiteng and Feng, Xi and Du, Xinrun and Zhang, Chenhao and Wang, Zekun and Bai, Yuelin and Zhao, Qixuan and Fan, Liyang and Gan, Chengguang and others}, |
|
|
journal={arXiv preprint arXiv:2406.05862}, |
|
|
year={2024} |
|
|
} |
|
|
</code></pre> |
|
|
</div> |
|
|
</section> |
|
|
|
|
|
<footer class="footer"> |
|
|
|
|
|
<div class="content has-text-centered"> |
|
|
</div> |
|
|
<div class="columns is-centered"> |
|
|
<div class="column is-8"> |
|
|
<div class="content"> |
|
|
<p> |
|
|
This website is website adapted from <a href="https://mmmu-benchmark.github.io/"">MMMU</a>, licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative |
|
|
Commons Attribution-ShareAlike 4.0 International License</a>. |
|
|
</p> |
|
|
</div> |
|
|
</div> |
|
|
</div> |
|
|
|
|
|
|
|
|
</footer> |
|
|
|
|
|
<script> |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
document.addEventListener('DOMContentLoaded', function() { |
|
|
var tables = document.querySelectorAll('table'); |
|
|
|
|
|
tables.forEach(function(table) { |
|
|
if (!table) return; |
|
|
|
|
|
var initialRows = Array.from(table.rows).slice(1); |
|
|
table.addEventListener('click', function(event) { |
|
|
var clickedCell = event.target.closest('td, th'); |
|
|
if (!clickedCell) return; |
|
|
var headerRow = clickedCell.parentNode; |
|
|
var columnIndex = Array.from(headerRow.cells).indexOf(clickedCell); |
|
|
var type = clickedCell.getAttribute('data-type'); |
|
|
|
|
|
if (headerRow.rowIndex === 0) { |
|
|
if (columnIndex === 0) { |
|
|
table.tBodies[0].innerHTML = ''; |
|
|
initialRows.forEach(row => table.tBodies[0].appendChild(row.cloneNode(true))); |
|
|
} |
|
|
} |
|
|
}); |
|
|
}); |
|
|
}); |
|
|
|
|
|
function sortTable(table, column, type, asc) { |
|
|
var tbody = table.tBodies[0]; |
|
|
var rows = Array.from(tbody.rows); |
|
|
|
|
|
rows.sort(function(a, b) { |
|
|
var valA = a.cells[column].textContent; |
|
|
var valB = b.cells[column].textContent; |
|
|
|
|
|
if (type === 'number') { |
|
|
valA = parseFloat(valA); |
|
|
valB = parseFloat(valB); |
|
|
} |
|
|
|
|
|
return asc ? valA - valB : valB - valA; |
|
|
}); |
|
|
|
|
|
rows.forEach(row => tbody.appendChild(row)); |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
document.getElementById('toggleButton').addEventListener('click', toggleTables); |
|
|
const canvas = document.getElementById('difficulty_level_chart'); |
|
|
canvas.style.width = '500px'; |
|
|
canvas.style.height = '120px'; |
|
|
const ctx = document.getElementById('difficulty_level_chart').getContext('2d'); |
|
|
const difficulty_level_chart = new Chart(ctx, { |
|
|
type: 'bar', |
|
|
data: { |
|
|
labels: ['Easy', 'Medium', 'Hard', 'Overall'], |
|
|
datasets: [{ |
|
|
label: 'Fuyu-8B', |
|
|
data: [28.9, 27, 26.4, 27.4], |
|
|
backgroundColor: 'rgba(196, 123, 160, 0.6)', |
|
|
borderColor: 'rgba(196, 123, 160, 1)', |
|
|
borderWidth: 1, |
|
|
hoverBackgroundColor: 'rgba(196, 123, 160, 1)' |
|
|
}, |
|
|
{ |
|
|
label: 'Qwen-VL-7B', |
|
|
data: [39.4, 31.9, 27.6, 32.9], |
|
|
backgroundColor: 'rgba(245, 123, 113, 0.6)', |
|
|
borderColor: 'rgba(245, 123, 113, 1)', |
|
|
borderWidth: 1, |
|
|
hoverBackgroundColor: 'rgba(245, 123, 113, 1)' |
|
|
}, |
|
|
{ |
|
|
label: 'LLaVA-1.5-13B', |
|
|
data: [41.3, 32.7, 26.7, 33.6], |
|
|
backgroundColor: 'rgba(255, 208, 80, 0.6)', |
|
|
borderColor: 'rgba(255, 208, 80, 1)', |
|
|
borderWidth: 1, |
|
|
hoverBackgroundColor: 'rgba(255, 208, 80, 1)' |
|
|
}, |
|
|
{ |
|
|
label: 'InstructBLIP-T5-XXL', |
|
|
data: [40.3, 32.3, 29.4, 33.8], |
|
|
backgroundColor: 'rgba(110, 194, 134, 0.6)', |
|
|
borderColor: 'rgba(110, 194, 134, 1)', |
|
|
borderWidth: 1, |
|
|
hoverBackgroundColor: 'rgba(110, 194, 134, 1)' |
|
|
}, |
|
|
{ |
|
|
label: 'BLIP-2 FLAN-T5-XXL', |
|
|
data: [41, 32.7, 28.5, 34], |
|
|
backgroundColor: 'rgba(255, 153, 78, 0.6)', |
|
|
borderColor: 'rgba(255, 153, 78, 1)', |
|
|
borderWidth: 1, |
|
|
hoverBackgroundColor: 'rgba(255, 153, 78, 1)' |
|
|
}, |
|
|
{ |
|
|
label: 'GPT-4V', |
|
|
data: [76.1, 55.6, 31.2, 55.7], |
|
|
backgroundColor: 'rgba(117, 209, 215, 0.6)', |
|
|
borderColor: 'rgba(117, 209, 215, 1)', |
|
|
borderWidth: 1, |
|
|
hoverBackgroundColor: 'rgba(117, 209, 215, 1)' |
|
|
}] |
|
|
}, |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20, |
|
|
font: { |
|
|
size: 16 |
|
|
} |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
ticks: { |
|
|
font: { |
|
|
size: 16 |
|
|
} |
|
|
} |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
labels: { |
|
|
font: { |
|
|
size: 16 |
|
|
} |
|
|
} |
|
|
}, |
|
|
tooltip: { |
|
|
callbacks: { |
|
|
label: function(context) { |
|
|
return context.dataset.label + ': ' + context.parsed.y; |
|
|
} |
|
|
} |
|
|
} |
|
|
}, |
|
|
onHover: (event, chartElement) => { |
|
|
event.native.target.style.cursor = chartElement[0] ? 'pointer' : 'default'; |
|
|
} |
|
|
} |
|
|
}); |
|
|
document.addEventListener('DOMContentLoaded', function() { |
|
|
|
|
|
const data_Diagrams = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [27.6, 30.1, 31.8, 30.0, 32.0, 46.8], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
|
|
|
|
|
|
new Chart(document.getElementById('chart_Diagrams'), { |
|
|
type: 'bar', |
|
|
data: data_Diagrams, |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_Tables = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [26.6, 29.0, 29.8, 27.8, 27.8, 61.8], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_Tables'), { |
|
|
type: 'bar', |
|
|
data: data_Tables, |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_PlotsAndCharts = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [24.8, 31.8, 36.2, 30.4, 35.8, 55.6], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_PlotsAndCharts'), { |
|
|
type: 'bar', |
|
|
data: data_PlotsAndCharts , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_ChemicalStructures = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [25.0, 27.2, 27.1, 26.7, 25.5, 50.6], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_ChemicalStructures'), { |
|
|
type: 'bar', |
|
|
data: data_ChemicalStructures , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_Photographs = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [27.6, 40.5, 41.4, 44.4, 42.0, 64.2], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_Photographs'), { |
|
|
type: 'bar', |
|
|
data: data_Photographs , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_Paintings = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [28.7, 57.2, 53.6, 56.3, 52.1, 75.9], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_Paintings'), { |
|
|
type: 'bar', |
|
|
data: data_Paintings , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_GeometricShapes = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [21.1, 25.3, 21.4, 25.6, 28.3, 40.2], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_GeometricShapes'), { |
|
|
type: 'bar', |
|
|
data: data_GeometricShapes , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_SheetMusic = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [35.2, 33.4, 34.6, 35.8, 34.9, 38.8], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_SheetMusic'), { |
|
|
type: 'bar', |
|
|
data: data_SheetMusic , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_MedicalImages = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [25.4, 29.8, 31.6, 36.4, 29.8, 59.6], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_MedicalImages'), { |
|
|
type: 'bar', |
|
|
data: data_MedicalImages , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_PathologicalImages = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [26.5, 27.7, 31.2, 35.2, 35.6, 63.6], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_PathologicalImages'), { |
|
|
type: 'bar', |
|
|
data: data_PathologicalImages , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_MicroscopicImages = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [27.0, 37.6, 29.2, 36.3, 32.7, 58.0], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_MicroscopicImages'), { |
|
|
type: 'bar', |
|
|
data: data_MicroscopicImages , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_MRIsCTScansXrays = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [21.7, 36.9, 33.3, 39.4, 29.8, 50.0], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_MRIsCTScansXrays'), { |
|
|
type: 'bar', |
|
|
data: data_MRIsCTScansXrays , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_SketchesAndDrafts = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [37.0, 32.1, 29.9, 38.0, 33.7, 55.4], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_SketchesAndDrafts'), { |
|
|
type: 'bar', |
|
|
data: data_SketchesAndDrafts , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_Maps = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [38.2, 36.5, 45.9, 47.6, 43.5, 61.8], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_Maps'), { |
|
|
type: 'bar', |
|
|
data: data_Maps , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_TechnicalBlueprints = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [24.7, 25.9, 28.4, 25.3, 27.8, 38.9], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_TechnicalBlueprints'), { |
|
|
type: 'bar', |
|
|
data: data_TechnicalBlueprints , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_TreesAndGraphs = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [30.1, 28.1, 28.8, 28.8, 34.9, 50.0], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_TreesAndGraphs'), { |
|
|
type: 'bar', |
|
|
data: data_TreesAndGraphs , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_MathematicalNotations = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [15.8, 27.1, 22.6, 21.8, 21.1, 45.9], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_MathematicalNotations'), { |
|
|
type: 'bar', |
|
|
data: data_MathematicalNotations , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_ComicsAndCartoons = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [29.0, 51.9, 49.6, 54.2, 51.1, 68.7], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_ComicsAndCartoons'), { |
|
|
type: 'bar', |
|
|
data: data_ComicsAndCartoons , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_Sculpture = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [30.8, 46.2, 49.6, 51.3, 53.0, 76.1], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_Sculpture'), { |
|
|
type: 'bar', |
|
|
data: data_Sculpture , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_Portraits = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [20.9, 52.7, 46.2, 54.9, 47.3, 70.3], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_Portraits'), { |
|
|
type: 'bar', |
|
|
data: data_Portraits , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_Screenshots = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [38.6, 35.7, 38.6, 34.3, 47.1, 65.7], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_Screenshots'), { |
|
|
type: 'bar', |
|
|
data: data_Screenshots , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_Other = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [28.3, 38.3, 50.0, 51.7, 58.3, 68.3], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_Other'), { |
|
|
type: 'bar', |
|
|
data: data_Other , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_Poster = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [38.6, 50.9, 52.6, 61.4, 64.9, 80.7], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_Poster'), { |
|
|
type: 'bar', |
|
|
data: data_Poster , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_IconsAndSymbols = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [23.8, 66.7, 57.1, 59.5, 59.5, 78.6], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_IconsAndSymbols'), { |
|
|
type: 'bar', |
|
|
data: data_IconsAndSymbols , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_HistoricalTimelines = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [30.0, 36.7, 40.0, 43.3, 43.3, 63.3], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_HistoricalTimelines'), { |
|
|
type: 'bar', |
|
|
data: data_HistoricalTimelines , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_3DRenderings = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [33.3, 28.6, 57.1, 38.1, 47.6, 47.6], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_3DRenderings'), { |
|
|
type: 'bar', |
|
|
data: data_3DRenderings , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_DNASequences = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [20.0, 45.0, 25.0, 25.0, 45.0, 55.0], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_DNASequences'), { |
|
|
type: 'bar', |
|
|
data: data_DNASequences , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_Landscapes = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [43.8, 43.8, 50.0, 31.2, 62.5, 68.8], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_Landscapes'), { |
|
|
type: 'bar', |
|
|
data: data_Landscapes , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_LogosAndBranding = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [21.4, 57.1, 64.3, 35.7, 50.0, 85.7], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_LogosAndBranding'), { |
|
|
type: 'bar', |
|
|
data: data_LogosAndBranding , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
|
|
|
|
|
|
const data_Advertisements = { |
|
|
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'], |
|
|
datasets: [{ |
|
|
data: [30.0, 60.0, 50.0, 60.0, 70.0, 100.0], |
|
|
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'], |
|
|
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'], |
|
|
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'] |
|
|
}] |
|
|
}; |
|
|
new Chart(document.getElementById('chart_Advertisements'), { |
|
|
type: 'bar', |
|
|
data: data_Advertisements , |
|
|
options: { |
|
|
scales: { |
|
|
y: { |
|
|
beginAtZero: true, |
|
|
min: 0, |
|
|
max: 100, |
|
|
ticks: { |
|
|
stepSize: 20 |
|
|
} |
|
|
}, |
|
|
x: { |
|
|
display: false |
|
|
} |
|
|
}, |
|
|
plugins: { |
|
|
legend: { |
|
|
display: false |
|
|
}, |
|
|
tooltip: { |
|
|
} |
|
|
} |
|
|
} |
|
|
}); |
|
|
}); |
|
|
|
|
|
</script> |
|
|
|
|
|
<style> |
|
|
.hidden { |
|
|
display: none; |
|
|
} |
|
|
.sortable:hover { |
|
|
cursor: pointer; |
|
|
} |
|
|
.asc::after { |
|
|
content: ' ↑'; |
|
|
} |
|
|
.desc::after { |
|
|
content: ' ↓'; |
|
|
} |
|
|
#toggleButton { |
|
|
background-color: #ffffff; |
|
|
border: 1px solid #dddddd; |
|
|
color: #555555; |
|
|
padding: 10px 20px; |
|
|
text-align: center; |
|
|
text-decoration: none; |
|
|
display: inline-block; |
|
|
font-size: 14px; |
|
|
margin: 4px 2px; |
|
|
cursor: pointer; |
|
|
border-radius: 25px; |
|
|
box-shadow: 0 4px 8px 0 rgba(0,0,0,0.2); |
|
|
transition-duration: 0.4s; |
|
|
} |
|
|
|
|
|
#toggleButton:hover { |
|
|
box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24), 0 17px 50px 0 rgba(0,0,0,0.19); |
|
|
} |
|
|
|
|
|
table { |
|
|
border-collapse: collapse; |
|
|
width: 100%; |
|
|
margin-top: 5px; |
|
|
border: 1px solid #ddd; |
|
|
font-size: 14px; |
|
|
} |
|
|
|
|
|
th, td { |
|
|
text-align: left; |
|
|
padding: 8px; |
|
|
} |
|
|
|
|
|
th { |
|
|
background-color: #f2f2f2; |
|
|
border-bottom: 2px solid #ddd; |
|
|
} |
|
|
|
|
|
td:hover {background-color: #ffffff;} |
|
|
</style> |
|
|
|
|
|
|
|
|
|
|
|
<script> |
|
|
(function() { |
|
|
var ws = new WebSocket('ws://' + window.location.host + |
|
|
'/jb-server-page?reloadMode=RELOAD_ON_SAVE&'+ |
|
|
'referrer=' + encodeURIComponent(window.location.pathname)); |
|
|
ws.onmessage = function (msg) { |
|
|
if (msg.data === 'reload') { |
|
|
window.location.reload(); |
|
|
} |
|
|
if (msg.data.startsWith('update-css ')) { |
|
|
var messageId = msg.data.substring(11); |
|
|
var links = document.getElementsByTagName('link'); |
|
|
for (var i = 0; i < links.length; i++) { |
|
|
var link = links[i]; |
|
|
if (link.rel !== 'stylesheet') continue; |
|
|
var clonedLink = link.cloneNode(true); |
|
|
var newHref = link.href.replace(/(&|\?)jbUpdateLinksId=\d+/, "$1jbUpdateLinksId=" + messageId); |
|
|
if (newHref !== link.href) { |
|
|
clonedLink.href = newHref; |
|
|
} |
|
|
else { |
|
|
var indexOfQuest = newHref.indexOf('?'); |
|
|
if (indexOfQuest >= 0) { |
|
|
|
|
|
clonedLink.href = newHref.substring(0, indexOfQuest + 1) + 'jbUpdateLinksId=' + messageId + '&' + |
|
|
newHref.substring(indexOfQuest + 1); |
|
|
} |
|
|
else { |
|
|
clonedLink.href += '?' + 'jbUpdateLinksId=' + messageId; |
|
|
} |
|
|
} |
|
|
link.replaceWith(clonedLink); |
|
|
} |
|
|
} |
|
|
}; |
|
|
})(); |
|
|
</script></body><div style="all: initial;"><div id="__hcfy__" style="all: initial;"></div></div></html> |