Mqleet's picture
[update] templates
a3d3755
<!DOCTYPE html>
<html>
<head>
<title>II-Bench</title>
<style>
.hidden {
display: none;
}
</style>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<script src="https://kit.fontawesome.com/f8ddf9854a.js" crossorigin="anonymous"></script>
<meta charset="utf-8">
<meta name="description" content="An Image Implication Understanding Benchmark for Multimodal Large Language Models">
<meta name="keywords" content="II-Bench, LMM, LMM Evaluation,MLLM, MLLM Evaluation, Multimodal large language model, Vision Language Model, Large Language Model, Large Multimodal Model, artificial intelligence, AI, AGI, artificial general intelligence">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title> II-Bench: An Image Implication Understanding Benchmark for Multimodal Large Language Models</title>
<link rel="icon" href="images/icon.png">
<link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro" rel="stylesheet">
<link rel="stylesheet" href="static/css/bulma.min.css">
<link rel="stylesheet" href="static/css/bulma-carousel.min.css">
<link rel="stylesheet" href="static/css/bulma-slider.min.css">
<link rel="stylesheet" href="static/css/fontawesome.all.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
<link rel="stylesheet" href="static/css/index.css">
<link rel="stylesheet" href="static/css/leaderboard.css">
<!-- <link href="https://unpkg.com/tabulator-tables@5.5.2/dist/css/tabulator_bulma.min.css" rel="stylesheet">
<script type="text/javascript" src="https://unpkg.com/tabulator-tables@5.5.2/dist/js/tabulator.min.js"></script> -->
<script type="text/javascript" src="static/js/sort-table.js" defer=""></script>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer="" src="static/js/fontawesome.all.min.js"></script>
<script src="static/js/bulma-carousel.min.js"></script>
<script src="static/js/bulma-slider.min.js"></script>
<script src="static/js/index.js"></script>
<script src="static/js/question_card.js"></script>
<!-- <script src="./data/results/data_setting.js" defer></script>-->
<!-- <script src="./data/results/model_scores.js" defer></script>-->
<!-- <script src="./visualizer/data/data_public.js" defer></script>-->
</head>
<body class="II-Bench-container">
<nav class="navbar" role="navigation" aria-label="main navigation">
<div class="navbar-brand">
<a role="button" class="navbar-burger" aria-label="menu" aria-expanded="false">
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
<span aria-hidden="true"></span>
</a>
</div>
<!-- <div class="navbar-menu">
<div class="navbar-start" style="flex-grow: 1; justify-content: center;">
<div class="navbar-item has-dropdown is-hoverable">
<a class="navbar-link">
More Research
</a>
<div class="navbar-dropdown">
<a class="navbar-item" href="https://tiger-ai-lab.github.io/MAmmoTH/">
<b>MAmmoTH</b> <p style="font-size:18px; display: inline; margin-left: 5px;">🔥</p>
</a>
<a class="navbar-item" href="https://osu-nlp-group.github.io/TableLlama/">
TableLlama
<a class="navbar-item" href="https://osu-nlp-group.github.io/MagicBrush/">
MagicBrush
</a>
<a class="navbar-item" href="https://osu-nlp-group.github.io/Mind2Web/">
Mind2Web
</a>
</a>
</a>
</div>
</div>
</div>
</div> -->
</nav>
<section class="hero">
<div class="hero-body">
<div class="container is-max-desktop">
<div class="columns is-centered">
<div class="column has-text-centered">
<h1 class="title is-1 publication-title is-bold">
<img src="images/logo.png" style="width:1em;vertical-align: middle" alt="Logo">
<span class="II-Bench" style="vertical-align: middle">II-Bench</span>
</h1>
<h2 class="subtitle is-3 publication-subtitle">
An Image Implication Understanding Benchmark for Multimodal Large Language Models
</h2>
<p style="color: red; font-size: 1.5em; font-weight: bold;">NeurIPS 2024 D&B Track</p>
<!--
<div class="is-size-5 publication-authors">
<span class="author-block">
<a href="https://xiangyue9607.github.io/" style="text-decoration: none; color: inherit;">Xiang Yue*<sup style="color:#6fbf73;">†,1</sup></a>,
</span>
<span class="author-block">
<a href="https://yuanshengni.github.io/" style="text-decoration: none; color: inherit;">Yuansheng Ni*<sup style="color:#ffac33;">2</sup></a>
,
</span>
<span class="author-block">
<a href="https://drogozhang.github.io/" style="text-decoration: none; color: inherit;">Kai Zhang*<sup style="color:#ed4b82;">3</sup></a>
,
</span>
<span class="author-block">Tianyu Zheng*<sup style="color:#007bff;">4</sup>,</span><br>
<span class="author-block">Ruoqi Liu<sup style="color:#ed4b82;">3</sup>,</span>
<span class="author-block">Ge Zhang<sup style="color:#ffac33;">2</sup>,</span>
<span class="author-block">Samuel Stevens<sup style="color:#ed4b82;">3</sup>,</span>
<span class="author-block">Dongfu Jiang<sup style="color:#ffac33;">2</sup>,</span>
<span class="author-block">Weiming Ren<sup style="color:#ffac33;">2</sup>,</span>
<span class="author-block">Yuxuan Sun<sup style="color:#007bff;">4</sup>,</span>
<span class="author-block">Cong Wei<sup style="color:#ffac33;">2</sup>,</span>
<span class="author-block">Botao Yu<sup style="color:#ed4b82;">3</sup>,</span>
<span class="author-block">Ruibin Yuan<sup style="color:#ffac33;">5</sup>,</span>
<span class="author-block">Renliang Sun<sup style="color:#ffac33;">2</sup>,</span>
<span class="author-block">Ming Yin<sup style="color:#9b51e0;">7</sup>,</span>
<span class="author-block">Boyuan Zheng<sup style="color:#ed4b82;">3</sup>,</span>
<span class="author-block">Zhenzhu Yang<sup style="color:#007bff;">4</sup>,</span>
<span class="author-block">Yibo Liu<sup style="color:#ed4b82;">6</sup>,</span>
<span class="author-block">Wenhao Huang<sup style="color:#007bff;">4</sup>,</span><br>
<span class="author-block">
<a href="https://web.cse.ohio-state.edu/~sun.397/" style="text-decoration: none; color: inherit;">Huan Sun*<sup style="color:#ed4b82;">3</sup></a>
,
</span>
<span class="author-block">
<a href="https://ysu1989.github.io/" style="text-decoration: none; color: inherit;">Yu Su*<sup style="color:#ed4b82;">†,3</sup></a>
,
</span>
<span class="author-block">
<a href="https://wenhuchen.github.io/" style="text-decoration: none; color: inherit;">Wenhu Chen*<sup style="color:#ffac33;">†,2</sup></a>
</span>
</div>
<br>
<div class="is-size-5 publication-authors">
<span class="author-block"><sup style="color:#6fbf73;">1</sup>IN.AI Research,</span>
<span class="author-block"><sup style="color:#ffac33;">2</sup>University of Waterloo,</span>
<span class="author-block"><sup style="color:#ed4b82;">3</sup>The Ohio State University,</span>
<span class="author-block"><sup style="color:#007bff;">4</sup>Independent,</span></br>
<span class="author-block"><sup style="color:#ffac33;">5</sup>Carnegie Mellon University,</span>
<span class="author-block"><sup style="color:#ed4b82;">6</sup>University of Victoria,</span>
<span class="author-block"><sup style="color:#9b51e0;">7</sup>Princeton University</span>
</div>
<br>
<div class="is-size-5 publication-authors">
<span class="author-block">*Core Contributors</span><br>
<span class="author-block">†Corresponding to:</span>
<span class="author-block"><a href="mailto:xiangyue.work@gmail.com">xiangyue.work@gmail.com</a>,</span>
<span class="author-block"><a href="mailto:su.809@osu.edu">su.809@osu.edu</a>,</span>
<span class="author-block"><a href="mailto:wenhuchen@uwaterloo.ca">wenhuchen@uwaterloo.ca</a></span>
</div> -->
<div class="column has-text-centered">
<div class="publication-links">
<!-- PDF Link. -->
<span class="link-block">
<!-- @PAN TODO: change links -->
<a href="https://arxiv.org/pdf/2406.05862" class="external-link button is-normal is-rounded">
<span class="icon">
<i class="fas fa-file-pdf" aria-hidden="true"></i>
</span>
<span>arXiv</span>
</a>
</span>
<!-- <span class="link-block">-->
<!-- &lt;!&ndash; @PAN TODO: change links &ndash;&gt;-->
<!-- <a href="https://zenodo.org/records/10546498"-->
<!-- class="external-link button is-normal is-rounded">-->
<!-- <span class="icon">-->
<!-- <i class="fas fa-file-pdf"></i>-->
<!-- </span>-->
<!-- <span>zenodo</span>-->
<!-- </a>-->
<!-- </span>-->
<span class="link-block">
<a href="https://huggingface.co/papers/2406.05862" class="external-link button is-normal is-rounded">
<span class="icon">
<p style="font-size:18px">🤗</p>
</span>
<span>HF Paper</span>
</a>
</span>
<span class="link-block">
<a href="https://huggingface.co/datasets/m-a-p/II-Bench" class="external-link button is-normal is-rounded">
<span class="icon">
<!-- <i class="far fa-images"></i> -->
<p style="font-size:18px">🤗</p>
<!-- 🔗 -->
</span>
<span>Dataset</span>
</a>
</span>
<span class="link-block">
<a href="https://github.com/II-Bench/II-Bench" class="external-link button is-normal is-rounded">
<span class="icon">
<i class="fab fa-github" aria-hidden="true"></i>
</span>
<span>Code</span>
</a>
</span>
<!-- Dataset Link. -->
<!-- Leaderboard Link. -->
<span class="link-block">
<a href="index.html#leaderboard"
class="external-link button is-normal is-rounded">
<span class="icon has-text-white">
<!-- <i class="fa-solid fa-trophy"></i>-->
<p style="font-size:18px">🏆</p>
</span>
<span>Leaderboard</span>
</a>
</span>
<!-- Visualization Link. -->
<span class="link-block">
<a href="https://eval.ai/web/challenges/challenge-page/2334/overview"
class="external-link button is-normal is-rounded">
<span class="icon has-text-white">
<p style="font-size:18px">📖</p>
<!-- <i class="fa-solid fa-medal"></i>-->
</span>
<span>EvalAI</span>
</a>
</span>
<!-- Twitter Link. -->
<!-- <span class="link-block">-->
<!-- <a href="https://twitter.com/GeZhang86038849/status/1749660947223044325"-->
<!-- class="external-link button is-normal is-rounded">-->
<!-- <span class="icon has-text-white">-->
<!-- <i class="fa-brands fa-x-twitter"></i>-->
<!-- &lt;!&ndash; <p style="font-size:18px">🌐</p> &ndash;&gt;-->
<!-- </span>-->
<!-- <span>Twitter</span>-->
<!-- </a>-->
<!-- </span>-->
<!-- EvalAI Link. -->
<!-- <span class="link-block">-->
<!-- <a href="#examples"-->
<!-- class="external-link button is-normal is-rounded">-->
<!-- <span class="icon has-text-white">-->
<!-- <i class="fa-solid fa-book"></i>-->
<!-- </span>-->
<!-- <span>Examples</span>-->
<!-- </a>-->
<!-- </span>-->
</div>
</div>
</h2></div>
</div>
</div>
</div>
</section>
<style>
.center {
display: block;
margin-left: auto;
margin-right: auto;
width: 80%;
}
</style>
<section class="hero teaser">
<div class="container is-max-desktop">
<!-- <div class="hero-body">
<img src="static/images/tease_scores.png" alt="Examples from the dataset"/>
<h2 class="subtitle has-text-centered">
<span class="dnerf">Nerfies</span> turns selfie videos from your phone into
free-viewpoint
portraits.
</h2>
</div> -->
<!-- <div class="box m-5"> -->
<div class="content has-text-centered">
<img src="images/composition.jpg" alt="geometric reasoning" width="40%">
<p> Overview of II-Bench: II-Bench comprises 1,222 images, spanning six domains: life, art, society, psychology, environment and others.</p>
</div>
<!-- </div> -->
</div>
</section>
<section class="section">
<div class="container" style="margin-bottom: 2vh;">
<!-- Abstract. -->
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title ">🔔News</h2>
<div class="content has-text-justified">
<p>
<b>🔥[2024-09-26]: II-Bench has been accepted to the NeurIPS 2024 Datasets and Benchmarks.</b>
</p>
<p>
<b>🔥[2024-06-26]: We released <a href="https://eval.ai/web/challenges/challenge-page/2334/overview">II-Bench</a> challenge on <a href="https://eval.ai/">EvalAI</a>. You can submit your results and evaluate them there.😆</b>
</p>
<p>
<b>🌟[2024-06-25]: We added the results of latest Claude 3.5 Sonnet, which achieved the SOTA performance among all models so far.</b>
</p>
</div>
<h2 class="title is-3">Introduction</h2>
<div class="content has-text-justified">
<p>
The rapid advancements in the development of multimodal large language models (MLLMs) have consistently led to new breakthroughs on various benchmarks.
In response, numerous challenging and comprehensive benchmarks have been proposed to more accurately assess the capabilities of MLLMs.
However, there is a dearth of exploration of the higher-order perceptual capabilities of MLLMs.
To fill this gap, we propose the <b>I</b>mage <b>I</b>mplication understanding <b>Bench</b>mark, <b>II-Bench</b>, which aims to evaluate the model's higher-order perception of images.
Our extensive experiments on 20 MLLMs reveal significant performance gaps between models and humans, particularly in abstract domains like Art and Psychology.
Our findings highlight the need for improved emotional understanding in MLLMs and suggest that incorporating emotional polarity information can enhance model performance.
II-Bench aims to inspire advancements in multimodal AI research and foster the development of more sophisticated artificial general intelligence (AGI).
</p>
</div>
</div>
</div>
<!--/ Abstract. -->
</div>
</section>
<!-- DATASET SECTION -->
<section class="hero is-light is-small">
<div class="hero-body has-text-centered">
<h1 class="title is-1 mmmu">
<img src="images/logo.png" style="width:1em;vertical-align: middle" alt="Logo">
<span class="mmmu" style="vertical-align: middle">II-Benchmark</span>
</h1>
</div>
</section>
<!-- <section class="section">
<div class="container" style="margin-bottom: 2vh;">
<div class="columns is-centered has-text-centered">
<div class="column is-four-fifths">
<h2 class="title is-3">Introduction</h2>
<div class="content has-text-justified">
<p> -->
<section class="section">
<div class="container">
<div class="columns is-centered has-text-centered">
<!-- <div class="column is-full-width has-text-centered"> -->
<div class="column is-four-fifths">
<h2 class="title is-3">Overview</h2>
<div class="content has-text-justified">
<p>
We introduce the <b>I</b>mage <b>I</b>mplication Understanding <b>Bench</b>mark <b>II-Bench</b>, a new benchmark measuring the higher-order perceptual, reasoning and comprehension abilities of MLLMs when presented with complex implication images.
These images, including abstract artworks, comics and posters, possess visual implications that require an understanding of visual details and reasoning ability.
II-Bench reveals whether current MLLMs, leveraging their inherent comprehension abilities, can accurately decode the metaphors embedded within the complex and abstract information presented in these images.
<img src="images/II-bench-sample.jpg" alt="algebraic reasoning" class="center">
<br>
</p><p>
II-Bench contains a total of 1,222 various images.
These images are manually collected and annotated by 50 undergraduate students from various disciplines and institutions, with sources from multiple renowned illustration websites.
Each image is manually designed with one to three multiple-choice questions, each with six options and only one correct answer.
The questions cover the metaphors, symbolism, and detailed understanding of the images.
The benchmark includes a total of 1,434 multiple-choice questions, with 1,399 questions used to construct the test set and 35 questions used to construct the development and validation set for few-shot tasks.
</p></div>
</div>
</div>
<!-- <div class="columns is-centered has-text-centered">-->
<!-- &lt;!&ndash; <div class="column is-full-width has-text-centered"> &ndash;&gt;-->
<!-- <div class="column is-four-fifths">-->
<!-- <h2 class="title is-3">Comparisons with Existing Benchmarks</h2>-->
<!-- <div class="content has-text-justified">-->
<!-- <p>-->
<!-- To further distinguish the difference between <i>dataset</i> and other existing ones, we elaborate the benchmark details in Figure. -->
<!-- From the <i>breadth</i> perspective, the prior benchmarks are heavily focused on daily knowledge and common sense. -->
<!-- The covered image format is also limited. Our benchmark aims to cover college-level knowledge with 30 image formats including diagrams, -->
<!-- tables, charts, chemical structures, photos, paintings, geometric shapes, music sheets, medical images, etc. -->
<!-- In the <i>depth</i> aspect, the previous benchmarks normally require commonsense knowledge or simple physical or temporal reasoning. -->
<!-- In contrast, our benchmark requires deliberate reasoning with college-level subject knowledge.-->
<!-- </p>-->
<!-- <div class="content has-text-centered">-->
<!-- <img src="c_static/images/table1.jpg" alt="algebraic reasoning" class="center">-->
<!-- <p> Sampled II-Bench examples from each discipline. The questions and images need expert-level knowledge to understand and reason.</p>-->
<!-- </div>-->
<!-- </div>-->
<!-- </div>-->
<!-- </div>-->
<div class="columns is-centered m-6">
<div class="column is-full has-text-centered content">
<h2 class="title is-3">Statistics</h2>
<div id="results-carousel" class="carousel results-carousel">
<div class="box m-5">
<div class="content has-text-centered">
<img src="images/II-bench-type.png" alt="algebraic reasoning" width="90%">
<p> II-Bench specific image type and domain statistics.</p>
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="images/statics.png" alt="arithmetic reasoning" width="90%">
<p> Key statistics of the II-Bench benchmark</p>
</div>
</div>
<!-- <div class="box m-5">-->
<!-- <div class="content has-text-centered">-->
<!-- <img src="c_static/images/image_type_count.jpg" alt="arithmetic reasoning" width="95%"/>-->
<!-- <p> Distribution of image types in the II-Bench dataset</p>-->
<!-- </div>-->
<!-- </div>-->
</div>
</div>
</div>
<!-- <div class="columns is-centered m-6">
<div class="column is-max-desktop has-text-centered">
<h2 class="title is-3" id="visualization">Visualization</h2>
<iframe src="visualizer/explore.html" style="width: 100%;min-height: 100vh; border-radius: 20px;"></iframe>
</div>
</div> -->
</div>
</section>
<!-- RESULTS SECTION -->
<section class="hero is-light is-small">
<div class="hero-body has-text-centered">
<h1 class="title is-1 mmmu">Experiment Results</h1>
</div>
</section>
<section class="section">
<div class="container">
<!-------------------------------------------------------------------- RESULTS SECTION -------------------------------------------------------------------->
<div class="columns is-centered m-6">
<div class="column is-full has-text-centered content">
<h2 class="title is-3" id="leaderboard">Leaderboard</h2>
<div class="content">
<div class="content has-text-justified">
<p>
We conduct experiments on II-Bench using both open-source and closed-source MLLMs. For
each model, we employ eight different settings: 1-shot, 2-shot, 3-shot, zero-shot (None), CoT,
Domain, Emotion and Rhetoric. "Emotion" denotes prompts where the model is informed about the
emotional polarity of the images(e.g., positive, negative), "Domain" involves adding information
about the image’s domain (e.g., life, environment) to the prompt, and "Rhetoric" signifies prompt
with information about the rhetorical devices used in the image (e.g., metaphor, personification),
while "None" indicates the use of standard prompts without any additional information. Uniform
prompts are applied across all MLLMs.
</p>
</div>
<div class="model-labels-container">
<!-- <span class="leaderboard-label" style="background-color: #f8fffe;">Open-Source</span>-->
<!-- <span class="leaderboard-label" style="background-color: #f9f2f8;">Closed</span>-->
<span class="leaderboard-label" style="background-color: #e4efdc;">Open-Source</span>
<span class="leaderboard-label" style="background-color: #e0ebf3;">Human</span>
<span class="leaderboard-label" style="background-color: #def9cb;">Proprietary</span>
</div>
<table id="table1" class="js-sort-table">
<tbody><tr>
<td class="js-sort-number"><strong>Reset</strong></td>
<td class="js-sort-number"><strong>Overall</strong></td>
<td class="js-sort-number"><strong>Life</strong></td>
<td class="js-sort-number"><strong>Art</strong></td>
<td class="js-sort-number"><strong>Society</strong></td>
<td class="js-sort-number"><strong>Psychology</strong></td>
<td class="js-sort-number"><strong>Environment</strong></td>
<td class="js-sort-number"><strong>Others</strong></td>
<td class="js-sort-number"><strong>Positive</strong></td>
<td class="js-sort-number"><strong>Neutral</strong></td>
<td class="js-sort-number"><strong>Negative</strong></td>
</tr>
<tr style="background-color: #def9cb;">
<td style="text-align: left;">
<b> Claude 3.5 sonnet </b>
</td>
<td> <b>80.9</b> </td>
<td> <b>81.4</b> </td>
<td> <b>77.6</b> </td>
<td> <b>80.9</b> </td>
<td> <b>78.3</b> </td>
<td> <b>86.3</b> </td>
<td style="text-decoration: underline;"> 83.1 </td>
<td> <b>81.1</b> </td>
<td> <b>80.9</b> </td>
<td > <b>80.9</b> </td>
</tr>
<tr style="background-color: #def9cb;">
<td style="text-align: left;">
<b> Qwen-VL-MAX </b>
</td>
<td style="text-decoration: underline;"> 74.8 </td>
<td style="text-decoration: underline;"> 74.7 </td>
<td> 71.8 </td>
<td style="text-decoration: underline;"> 74.6 </td>
<td style="text-decoration: underline;"> 73.0 </td>
<td> 76.5 </td>
<td> <b>84.6</b> </td>
<td style="text-decoration: underline;"> 80.1</td>
<td style="text-decoration: underline;"> 74.5 </td>
<td> 72.9 </td>
</tr>
<tr style="background-color: #def9cb;">
<td style="text-align: left;">
<b> Gemini-1.5 Pro </b>
</td>
<td> 73.9 </td>
<td> 73.7 </td>
<td style="text-decoration: underline;"> 74.1 </td>
<td> 74.4 </td>
<td> 63.2 </td>
<td style="text-decoration: underline;"> 80.4 </td>
<td style="text-decoration: underline;"> 83.1 </td>
<td style="text-decoration: underline;"> 80.1 </td>
<td> 70.8 </td>
<td style="text-decoration: underline;"> 75.4</td>
</tr>
<tr style="background-color: #def9cb;">
<td style="text-align: left;">
<b> GPT-4o </b>
</td>
<td> 72.6 </td>
<td> 72.5 </td>
<td> 72.9 </td>
<td> 73.3 </td>
<td > 68.4 </td>
<td> 76.5 </td>
<td> 75.4 </td>
<td> 78.6 </td>
<td> 71.2 </td>
<td> 72.5 </td>
</tr>
<tr style="background-color: #def9cb;">
<td style="text-align: left;">
<b> GPT-4V </b>
</td>
<td> 65.9 </td>
<td> 65.0 </td>
<td> 69.4 </td>
<td> 65.3 </td>
<td> 59.9 </td>
<td> 76.5 </td>
<td> 80.0 </td>
<td> 69.4 </td>
<td> 66.0 </td>
<td> 64.0 </td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b> LLaVA-1.6-34B </b>
</td>
<td> <b>73.8</b> </td>
<td> <b>73.8</b> </td>
<td style="text-decoration: underline;"> 71.8 </td>
<td> <b>73.3</b> </td>
<td> <b>71.1</b> </td>
<td style="text-decoration: underline;"> 78.4 </td>
<td style="text-decoration: underline;"> 81.5 </td>
<td> <b>79.1</b> </td>
<td> <b>72.9</b> </td>
<td> <b>72.9</b> </td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b> CogVLM2-Llama3-Chat </b>
</td>
<td style="text-decoration: underline;"> 70.3 </td>
<td style="text-decoration: underline;"> 68.9 </td>
<td> 68.2 </td>
<td style="text-decoration: underline;"> 70.9 </td>
<td style="text-decoration: underline;"> 67.8 </td>
<td> 72.5 </td>
<td> <b>86.2</b> </td>
<td> 69.9 </td>
<td style="text-decoration: underline;"> 71.1 </td>
<td style="text-decoration: underline;"> 69.1 </td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b> MiniCPM-Llama3-2.5 </b>
</td>
<td>69.4</td>
<td>68.4</td>
<td style="text-decoration: underline;"> 71.8 </td>
<td>69.4</td>
<td>64.5</td>
<td><b>80.4</b></td>
<td>78.5</td>
<td style="text-decoration: underline;"> 75.0 </td>
<td>69.3</td>
<td>66.9</td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b>Yi-VL-34B-Chat</b>
</td>
<td>67.9</td>
<td>67.5</td>
<td>70.6</td>
<td>67.7</td>
<td>63.8</td>
<td>70.6</td>
<td>76.9</td>
<td>74.0</td>
<td>68.2</td>
<td>64.5</td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b>Idefics2-8B</b>
</td>
<td>67.7</td>
<td>67.2</td>
<td><b>74.1</b></td>
<td>67.7</td>
<td>62.5</td>
<td>74.5</td>
<td>70.8</td>
<td>68.9</td>
<td>67.0</td>
<td>68.4</td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b>InternVL-Chat-1.5</b>
</td>
<td>66.3</td>
<td>63.6</td>
<td>65.9</td>
<td>68.5</td>
<td>65.8</td>
<td>64.7</td>
<td>76.9</td>
<td>73.5</td>
<td>65.4</td>
<td>64.5</td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b>InternLM-XComposer2-VL</b>
</td>
<td>62.1</td>
<td>61.7</td>
<td>62.4</td>
<td>62.3</td>
<td>58.6</td>
<td>70.6</td>
<td>66.2</td>
<td>65.8</td>
<td>63.0</td>
<td>58.7</td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b>Yi-VL-6B-Chat</b>
</td>
<td>61.3</td>
<td>60.9</td>
<td>63.5</td>
<td>60.7</td>
<td>56.6</td>
<td>66.7</td>
<td>72.3</td>
<td>61.7</td>
<td>61.7</td>
<td>61.1</td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b>DeepSeek-VL-Chat-7B</b>
</td>
<td>60.3</td>
<td>59.0</td>
<td>58.8</td>
<td>58.4</td>
<td>61.8</td>
<td>68.6</td>
<td>76.9</td>
<td>65.8</td>
<td>60.1</td>
<td>58.0</td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b>BLIP-2 FLAN-T5-XXL</b>
</td>
<td>57.8</td>
<td>57.1</td>
<td>63.5</td>
<td>57.0</td>
<td>53.3</td>
<td>66.7</td>
<td>66.2</td>
<td>67.9</td>
<td>57.2</td>
<td>54.3</td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b>Mantis-8B-siglip-Llama3</b>
</td>
<td>57.5</td>
<td>56.8</td>
<td>61.2</td>
<td>57.5</td>
<td>53.9</td>
<td>64.7</td>
<td>61.5</td>
<td>59.2</td>
<td>58.0</td>
<td>55.6</td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b>InstructBLIP-T5-XXL</b>
</td>
<td>56.7</td>
<td>56.2</td>
<td>58.8</td>
<td>58.6</td>
<td>45.4</td>
<td>64.7</td>
<td>64.6</td>
<td>63.3</td>
<td>56.1</td>
<td>54.6</td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b>Qwen-VL-Chat</b>
</td>
<td>53.4</td>
<td>53.2</td>
<td>49.4</td>
<td>52.1</td>
<td>50.0</td>
<td>60.8</td>
<td>72.3</td>
<td>56.1</td>
<td>52.6</td>
<td>53.6</td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b>mPLUGw-OWL2</b>
</td>
<td>53.2</td>
<td>54.0</td>
<td>56.5</td>
<td>50.5</td>
<td>52.0</td>
<td>60.8</td>
<td>56.9</td>
<td>55.6</td>
<td>52.6</td>
<td>53.1</td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b>BLIP-2 FLAN-T5-XL</b>
</td>
<td>52.8</td>
<td>53.0</td>
<td>58.8</td>
<td>52.5</td>
<td>42.8</td>
<td>64.7</td>
<td>58.5</td>
<td>56.1</td>
<td>52.9</td>
<td>51.0</td>
</tr>
<tr style="background-color: #e4efdc;">
<td style="text-align: left;">
<b>InstructBLIP-T5-XL</b>
</td>
<td>47.3</td>
<td>45.6</td>
<td>48.2</td>
<td>48.8</td>
<td>44.7</td>
<td>52.9</td>
<td>50.8</td>
<td>46.9</td>
<td>48.3</td>
<td>45.4</td>
</tr>
<tr style="background-color: #e0ebf3;">
<td style="text-align: left;">
<b> Human_avg </b>
</td>
<td> 90.3 </td>
<td> 90.0 </td>
<td> 88.2 </td>
<td> 91.4 </td>
<td> 86.6 </td>
<td> 96.1 </td>
<td> 92.3 </td>
<td> 84.7 </td>
<td> 89.1 </td>
<td> 92.2 </td>
</tr>
<tr style="background-color: #e0ebf3;">
<td style="text-align: left;">
<b> Human_best </b>
</td>
<td> <b>98.2</b> </td>
<td> <b>97.9</b> </td>
<td> <b>98.8</b> </td>
<td> <b>98.3</b> </td>
<td> <b>97.4</b> </td>
<td> <b>100.0</b> </td>
<td> <b>100.0</b> </td>
<td> <b>98.0</b> </td>
<td> <b>98.0</b> </td>
<td> <b>98.8</b> </td>
</tr>
<!-- <tr>
<td colspan="8" style="font-size: 18px;"><b>Large Language Models (LLMs): Only Text as Input</b></td>
</tr> -->
<!-- <tr style="background-color: #f8fffe;">
<td style="text-align: left;"><b>Llama2 7B</b></td>
<td>28.7</td>
<td>30.7</td>
<td>27.2</td>
<td>26.7</td>
<td>27.7</td>
<td>32.6</td>
<td>29.8</td>
</tr>
<tr style="background-color: #f4fdf5;">
<td style="text-align: left;"><b>FLAN-T5-XXL</b></td>
<td><b>31.2</b></td>
<td>36.8</td>
<td><b>28.9</b></td>
<td>26.7</td>
<td>32.8</td>
<td><b>44.8</b></td>
<td><b>28.3</b></td>
</tr>
<tr style="background-color: #f4fdf5;">
<td style="text-align: left;"><b>FLAN-T5-XXL + OCR</b></td>
<td><b>31.9</b></td>
<td>36.2</td>
<td>28.8</td>
<td>26.2</td>
<td>32.6</td>
<td><b>50.5</b></td>
<td><b>29.7</b></td>
</tr>
<tr style="background-color: #f4fdf5;">
<td style="text-align: left;"><b>FLAN-T5-XXL + LLaVA Caption</b></td>
<td><b>31.9</b></td>
<td><b>38.4</b></td>
<td>27.8</td>
<td><b>27.0</b></td>
<td><b>33.2</b></td>
<td>49.9</td>
<td>28.7</td>
</tr>
<tr style="background-color: #e7fde9;">
<td style="text-align: left;"><b>Vicuna-13B</b></td>
<td>31.0</td>
<td>35.1</td>
<td><b>30.1</b></td>
<td>24.7</td>
<td>31.4</td>
<td>44.8</td>
<td>30.1</td>
</tr>
<tr style="background-color: #e7fde9;">
<td style="text-align: left;"><b>Vicuna-13B + OCR</b></td>
<td>31.9</td>
<td>37.1</td>
<td>28.6</td>
<td><b>26.5</b></td>
<td>32.0</td>
<td>49.3</td>
<td>30.0</td>
</tr>
<tr style="background-color: #e7fde9;">
<td style="text-align: left;"><b>Vicuna-13B + LLaVA Caption</b></td>
<td><b>32.7</b></td>
<td><b>42.0</b></td>
<td>26.8</td>
<td>26.2</td>
<td><b>33.4</b></td>
<td><b>49.4</b></td>
<td><b>31.4</b></td>
</tr> -->
<!-- <tr style="background-color: #f8fffe;">
<td style="text-align: left;"><b>GPT-4 Text</b></td>
<td>33.8</td>
<td>32.9</td>
<td>28.5</td>
<td>30.6</td>
<td>41.3</td>
<td>53.0</td>
<td>28.4</td>
</tr> -->
</tbody></table>
<p> Overall results of different MLLMs and humans on different domains and emotions. The
best-performing model in each category is <b>in-bold</b>, and the second best is <u>underlined</u>.
</p>
</div>
</div>
</div>
<!-------------------------------------------------------------------- prompt skills -------------------------------------------------------------------->
<div class="columns is-centered m-6">
<div class="column is-full has-text-centered content">
<h2 class="title is-3">Different Prompt Skills</h2>
<div class="content has-text-justified">
<p>
<b>Analysis of Chain-of-Thought (CoT)</b>. The results indicate that CoT had no significant effect on improving accuracy.
In some cases, particularly with smaller open-source models, the accuracy even declined when CoT was used.
For example, CogVLM2-Llama3-Chat-19B scores 70.3% without CoT and drops to 69.3% with CoT, InternVL-Chat-1.5 scores 66.3% and 63.3% as the same.
These findings align with other benchmarks, which show that CoT is not particularly effective for image understanding tasks.
</p>
<p>
<b>Analysis of Different Types and Domains</b>. To evaluate the impact of different label information on model accuracy, we conduct an ablation study by providing corresponding label information (Emotion, Domain, Rhetoric) for the images in the prompt.
This outcome is consistent with the human perspective of image metaphor comprehension.
Emotion labels likely provide more intuitive and salient cues that align closely with human interpretative processes, thereby facilitating better model performance.
In contrast, Domain and Rhetoric labels, while still beneficial, are not as immediately intuitive or universally applicable, thus resulting in slightly lower effectiveness in improving model accuracy.
At the same time, from the perspective of model training, the model has a normal understanding of emotion, unlike the specific nouns we define ourselves in the Rhetoric and Domain labels.
The model does not see many descriptions of such specific nouns during pre-training, which does not help improve accuracy.
</p>
<div class="content has-text-centered">
<img src="images/prompt.png" width="75%">
<p>Overall results of different prompts on II-Bench.The label(Emotion, Domain, Rhetoric) means providing corresponding information for the images in the prompt.
The best-performing model in each category is <b>in-bold</b>, and the second best is <u>underlined</u> .</p>
</div>
<p>
<b>Analysis of Few-shot Examples.</b>. Specifically, the performance tends to drop as more examples are provided.
This can be attributed to the models’ inferior multi-image capabilities compared to their single-image capabilities, leading to a decline in accuracy with an increasing number of shots.
Additionally, as the number of shots increases, the input length becomes longer, and the model’s long text ability is insufficient, resulting in poor long context performance.
An example is Qwen-VL-Max, where inputs exceeding 6,000 tokens cause errors.
Moreover, chat models generally exhibit good instruction following ability, reducing the necessity for few-shot examples.
</p>
</div>
<div class="content has-text-centered">
<img src="images/shot.png" width="73%">
<p>Few-shot results of different models on the II-Bench. * means exceeds the context length.</p>
</div>
</div>
</div>
<!-------------------------------------------------------------------- Difficulty Levels SECTION -------------------------------------------------------------------->
<!--<div class="columns is-centered m-6">-->
<!-- <div class="column is-full has-text-centered content">-->
<!-- <h2 class="title is-3">Different Difficulty Levels</h2>-->
<!-- <div class="content has-text-justified">-->
<!-- <p>-->
<!-- We conduct result decomposition across question difficulties, as shown in table below.-->
<!-- Notably, there is a larger gap between the best open-source LMM, i.e. Yi-VL-34B, and GPT-4V when facing the medium and hard questions.-->
<!-- It is another strong evidence of the observation that the key disparity between Open-source LMMs and GPT-4V is the capacity to calculate and reason given complex conditions.-->
<!-- </p>-->
<!-- </div>-->
<!-- <div class="content has-text-centered">-->
<!-- <img src="c_static/images/table5.jpg" width="75%">-->
<!-- <p> Result decomposition across question difficulty levels. <b>bold results</b> in LMMs indicate the best results for all models, and the <b>blue results</b> indicate the best results among the open-source models.</p>-->
<!-- </div> -->
<!-- </div>-->
<!--</div>-->
<!-------------------------------------------------------------------- Error Analysis SECTION -------------------------------------------------------------------->
<div class="columns is-centered m-6">
<div class="column is-full has-text-centered content">
<h2 class="title is-3">Error Analysis</h2>
<div class="content has-text-justified">
<p>
In order to perform a comprehensive error analysis of GPT-4V’s performance on II-Bench, we randomly select 100 erroneous samples from each domain, in proportion to their representation in the dataset.
These samples are meticulously analyzed by expert annotators.
GPT-4V’s errors can be categorized into the following types: Metaphorical Misunderstanding, Detail Misunderstanding, Detail Ignorance, Surface-Level Interpretation, Reasoning Error, Reject to Answer and Answer Extraction Error.
</p>
</div>
<div class="content has-text-centered">
<img src="images/error.png" alt="error distribution" width="50%">
<p>GPT-4V error response distribution.</p>
</div>
<!-- <div id="results-carousel" class="carousel results-carousel">
<div class="box m-5">
<div class="content has-text-centered">
<img src="static/images/error_distribution_1.Jpeg" alt="algebraic reasoning" width="45%"/>
<p> Error distribution over 150 annotated GPT-4V errors.</p>
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="static/images/error_case_main_text_1_1.Jpeg" alt="arithmetic reasoning" width="45%"/>
<p> A basic perceptual error, easy for humans but challenging for GPT-4V.</p>
</div>
</div>
</div> -->
</div>
</div>
<!-------------------------------------------------------------------- Error Example -------------------------------------------------------------------->
<div class="columns is-centered m-6">
<div class="column is-full has-text-centered content">
<h2 class="title is-3" id="examples">Error Examples</h2>
<div id="results-carousel" class="carousel results-carousel">
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/7.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/8.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/9.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/10.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/11.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/12.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/13.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/14.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/15.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/16.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/17.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/18.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/19.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/20.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/28.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/29.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/30.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/31.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/32.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/33.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/34.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/35.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/36.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/37.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/38.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/39.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/40.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/45.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/46.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/47.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/48.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/49.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/54.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/55.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/56.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/57.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/61.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/62.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/63.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/64.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/65.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/66.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/67.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/68.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/69.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/74.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/75.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/76.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="error/77.png" alt="grade-lv" width="60%">
</div>
</div>
</div>
</div>
</div>
<!-------------------------------------------------------------------- Correct Example -------------------------------------------------------------------->
<div class="columns is-centered m-6">
<div class="column is-full has-text-centered content">
<h2 class="title is-3">Correct Examples</h2>
<div id="results-carousel" class="carousel results-carousel">
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/1.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/2.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/3.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/4.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/5.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/6.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/21.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/22.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/23.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/24.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/25.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/26.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/27.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/41.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/42.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/43.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/44.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/50.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/51.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/52.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/53.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/58.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/59.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/60.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/70.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/71.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/72.png" alt="grade-lv" width="60%">
</div>
</div>
<div class="box m-5">
<div class="content has-text-centered">
<img src="right/73.png" alt="grade-lv" width="60%">
</div>
</div>
</div>
</div>
</div>
<!-------------------------------------------------------------------- RESULTS SECTION -------------------------------------------------------------------->
</div>
</section>
<!-- @PAN TODO: bibtex -->
<section class="section" id="BibTeX">
<div class="container is-max-desktop content">
<h2 class="title is-3 has-text-centered">BibTeX</h2>
<pre><code>@article{liu2024ii,
title={II-Bench: An Image Implication Understanding Benchmark for Multimodal Large Language Models},
author={Liu, Ziqiang and Fang, Feiteng and Feng, Xi and Du, Xinrun and Zhang, Chenhao and Wang, Zekun and Bai, Yuelin and Zhao, Qixuan and Fan, Liyang and Gan, Chengguang and others},
journal={arXiv preprint arXiv:2406.05862},
year={2024}
}
</code></pre>
</div>
</section>
<footer class="footer">
<!-- <div class="container"> -->
<div class="content has-text-centered">
</div>
<div class="columns is-centered">
<div class="column is-8">
<div class="content">
<p>
This website is website adapted from <a href="https://mmmu-benchmark.github.io/&quot;">MMMU</a>, licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
Commons Attribution-ShareAlike 4.0 International License</a>.
</p>
</div>
</div>
</div>
<!-- </div> -->
</footer>
<script>
// function changeButtonText() {
// var button = document.getElementById('toggleButton');
// if (button.innerHTML.includes("Test Set Leaderboard")) {
// button.innerHTML = "<b style='font-size: larger;'>Validation Set Leaderboard</b> (Click to Switch)";
// } else {
// button.innerHTML = "<b style='font-size: larger;'>Test Set Leaderboard</b> (Click to Switch)";
// }
// }
document.addEventListener('DOMContentLoaded', function() {
var tables = document.querySelectorAll('table');
tables.forEach(function(table) {
if (!table) return;
var initialRows = Array.from(table.rows).slice(1);
table.addEventListener('click', function(event) {
var clickedCell = event.target.closest('td, th');
if (!clickedCell) return;
var headerRow = clickedCell.parentNode;
var columnIndex = Array.from(headerRow.cells).indexOf(clickedCell);
var type = clickedCell.getAttribute('data-type');
if (headerRow.rowIndex === 0) {
if (columnIndex === 0) {
table.tBodies[0].innerHTML = '';
initialRows.forEach(row => table.tBodies[0].appendChild(row.cloneNode(true)));
}
}
});
});
});
function sortTable(table, column, type, asc) {
var tbody = table.tBodies[0];
var rows = Array.from(tbody.rows);
rows.sort(function(a, b) {
var valA = a.cells[column].textContent;
var valB = b.cells[column].textContent;
if (type === 'number') {
valA = parseFloat(valA);
valB = parseFloat(valB);
}
return asc ? valA - valB : valB - valA;
});
rows.forEach(row => tbody.appendChild(row));
}
// 切换表格的函数
// function toggleTables () {
// var table1 = document.getElementById('table1');
// var table2 = document.getElementById('table2');
// table1.classList.toggle('hidden');
// table2.classList.toggle('hidden');
// }
document.getElementById('toggleButton').addEventListener('click', toggleTables);
const canvas = document.getElementById('difficulty_level_chart');
canvas.style.width = '500px';
canvas.style.height = '120px';
const ctx = document.getElementById('difficulty_level_chart').getContext('2d');
const difficulty_level_chart = new Chart(ctx, {
type: 'bar',
data: {
labels: ['Easy', 'Medium', 'Hard', 'Overall'],
datasets: [{
label: 'Fuyu-8B',
data: [28.9, 27, 26.4, 27.4],
backgroundColor: 'rgba(196, 123, 160, 0.6)',
borderColor: 'rgba(196, 123, 160, 1)',
borderWidth: 1,
hoverBackgroundColor: 'rgba(196, 123, 160, 1)'
},
{
label: 'Qwen-VL-7B',
data: [39.4, 31.9, 27.6, 32.9],
backgroundColor: 'rgba(245, 123, 113, 0.6)',
borderColor: 'rgba(245, 123, 113, 1)',
borderWidth: 1,
hoverBackgroundColor: 'rgba(245, 123, 113, 1)'
},
{
label: 'LLaVA-1.5-13B',
data: [41.3, 32.7, 26.7, 33.6],
backgroundColor: 'rgba(255, 208, 80, 0.6)',
borderColor: 'rgba(255, 208, 80, 1)',
borderWidth: 1,
hoverBackgroundColor: 'rgba(255, 208, 80, 1)'
},
{
label: 'InstructBLIP-T5-XXL',
data: [40.3, 32.3, 29.4, 33.8],
backgroundColor: 'rgba(110, 194, 134, 0.6)',
borderColor: 'rgba(110, 194, 134, 1)',
borderWidth: 1,
hoverBackgroundColor: 'rgba(110, 194, 134, 1)'
},
{
label: 'BLIP-2 FLAN-T5-XXL',
data: [41, 32.7, 28.5, 34],
backgroundColor: 'rgba(255, 153, 78, 0.6)',
borderColor: 'rgba(255, 153, 78, 1)',
borderWidth: 1,
hoverBackgroundColor: 'rgba(255, 153, 78, 1)'
},
{
label: 'GPT-4V',
data: [76.1, 55.6, 31.2, 55.7],
backgroundColor: 'rgba(117, 209, 215, 0.6)',
borderColor: 'rgba(117, 209, 215, 1)',
borderWidth: 1,
hoverBackgroundColor: 'rgba(117, 209, 215, 1)'
}]
},
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20,
font: {
size: 16
}
}
},
x: {
ticks: {
font: {
size: 16 // 设置X轴字体大小
}
}
}
},
plugins: {
legend: {
labels: {
font: {
size: 16 // 设置标签文字大小
}
}
},
tooltip: {
callbacks: {
label: function(context) {
return context.dataset.label + ': ' + context.parsed.y;
}
}
}
},
onHover: (event, chartElement) => {
event.native.target.style.cursor = chartElement[0] ? 'pointer' : 'default';
}
}
});
document.addEventListener('DOMContentLoaded', function() {
// Data for the "Diagrams" chart
const data_Diagrams = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [27.6, 30.1, 31.8, 30.0, 32.0, 46.8],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
// "data_Diagrams" chart
new Chart(document.getElementById('chart_Diagrams'), {
type: 'bar',
data: data_Diagrams,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_Tables" chart
const data_Tables = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [26.6, 29.0, 29.8, 27.8, 27.8, 61.8],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_Tables'), {
type: 'bar',
data: data_Tables,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_PlotsAndCharts " chart
const data_PlotsAndCharts = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [24.8, 31.8, 36.2, 30.4, 35.8, 55.6],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_PlotsAndCharts'), {
type: 'bar',
data: data_PlotsAndCharts ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_ChemicalStructures " chart
const data_ChemicalStructures = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [25.0, 27.2, 27.1, 26.7, 25.5, 50.6],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_ChemicalStructures'), {
type: 'bar',
data: data_ChemicalStructures ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_Photographs " chart
const data_Photographs = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [27.6, 40.5, 41.4, 44.4, 42.0, 64.2],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_Photographs'), {
type: 'bar',
data: data_Photographs ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_Paintings " chart
const data_Paintings = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [28.7, 57.2, 53.6, 56.3, 52.1, 75.9],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_Paintings'), {
type: 'bar',
data: data_Paintings ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_GeometricShapes " chart
const data_GeometricShapes = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [21.1, 25.3, 21.4, 25.6, 28.3, 40.2],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_GeometricShapes'), {
type: 'bar',
data: data_GeometricShapes ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_SheetMusic " chart
const data_SheetMusic = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [35.2, 33.4, 34.6, 35.8, 34.9, 38.8],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_SheetMusic'), {
type: 'bar',
data: data_SheetMusic ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_MedicalImages " chart
const data_MedicalImages = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [25.4, 29.8, 31.6, 36.4, 29.8, 59.6],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_MedicalImages'), {
type: 'bar',
data: data_MedicalImages ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_PathologicalImages " chart
const data_PathologicalImages = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [26.5, 27.7, 31.2, 35.2, 35.6, 63.6],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_PathologicalImages'), {
type: 'bar',
data: data_PathologicalImages ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_MicroscopicImages " chart
const data_MicroscopicImages = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [27.0, 37.6, 29.2, 36.3, 32.7, 58.0],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_MicroscopicImages'), {
type: 'bar',
data: data_MicroscopicImages ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_MRIsCTScansXrays " chart
const data_MRIsCTScansXrays = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [21.7, 36.9, 33.3, 39.4, 29.8, 50.0],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_MRIsCTScansXrays'), {
type: 'bar',
data: data_MRIsCTScansXrays ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_SketchesAndDrafts " chart
const data_SketchesAndDrafts = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [37.0, 32.1, 29.9, 38.0, 33.7, 55.4],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_SketchesAndDrafts'), {
type: 'bar',
data: data_SketchesAndDrafts ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_Maps " chart
const data_Maps = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [38.2, 36.5, 45.9, 47.6, 43.5, 61.8],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_Maps'), {
type: 'bar',
data: data_Maps ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_TechnicalBlueprints " chart
const data_TechnicalBlueprints = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [24.7, 25.9, 28.4, 25.3, 27.8, 38.9],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_TechnicalBlueprints'), {
type: 'bar',
data: data_TechnicalBlueprints ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_TreesAndGraphs " chart
const data_TreesAndGraphs = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [30.1, 28.1, 28.8, 28.8, 34.9, 50.0],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_TreesAndGraphs'), {
type: 'bar',
data: data_TreesAndGraphs ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_MathematicalNotations " chart
const data_MathematicalNotations = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [15.8, 27.1, 22.6, 21.8, 21.1, 45.9],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_MathematicalNotations'), {
type: 'bar',
data: data_MathematicalNotations ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_ComicsAndCartoons " chart
const data_ComicsAndCartoons = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [29.0, 51.9, 49.6, 54.2, 51.1, 68.7],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_ComicsAndCartoons'), {
type: 'bar',
data: data_ComicsAndCartoons ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_Sculpture " chart
const data_Sculpture = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [30.8, 46.2, 49.6, 51.3, 53.0, 76.1],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_Sculpture'), {
type: 'bar',
data: data_Sculpture ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_Portraits " chart
const data_Portraits = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [20.9, 52.7, 46.2, 54.9, 47.3, 70.3],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_Portraits'), {
type: 'bar',
data: data_Portraits ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_Screenshots " chart
const data_Screenshots = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [38.6, 35.7, 38.6, 34.3, 47.1, 65.7],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_Screenshots'), {
type: 'bar',
data: data_Screenshots ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_Other " chart
const data_Other = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [28.3, 38.3, 50.0, 51.7, 58.3, 68.3],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_Other'), {
type: 'bar',
data: data_Other ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_Poster " chart
const data_Poster = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [38.6, 50.9, 52.6, 61.4, 64.9, 80.7],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_Poster'), {
type: 'bar',
data: data_Poster ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_IconsAndSymbols " chart
const data_IconsAndSymbols = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [23.8, 66.7, 57.1, 59.5, 59.5, 78.6],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_IconsAndSymbols'), {
type: 'bar',
data: data_IconsAndSymbols ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_HistoricalTimelines " chart
const data_HistoricalTimelines = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [30.0, 36.7, 40.0, 43.3, 43.3, 63.3],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_HistoricalTimelines'), {
type: 'bar',
data: data_HistoricalTimelines ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_3DRenderings " chart
const data_3DRenderings = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [33.3, 28.6, 57.1, 38.1, 47.6, 47.6],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_3DRenderings'), {
type: 'bar',
data: data_3DRenderings ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_DNASequences " chart
const data_DNASequences = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [20.0, 45.0, 25.0, 25.0, 45.0, 55.0],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_DNASequences'), {
type: 'bar',
data: data_DNASequences ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_Landscapes " chart
const data_Landscapes = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [43.8, 43.8, 50.0, 31.2, 62.5, 68.8],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_Landscapes'), {
type: 'bar',
data: data_Landscapes ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_LogosAndBranding " chart
const data_LogosAndBranding = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [21.4, 57.1, 64.3, 35.7, 50.0, 85.7],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_LogosAndBranding'), {
type: 'bar',
data: data_LogosAndBranding ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
// "data_Advertisements " chart
const data_Advertisements = {
labels: ['Fuyu-8B', 'Qwen-VL-7B', 'InstructBLIP-T5-XXL', 'LLaVA-1.5-13B', 'BLIP-2 FLAN-T5-XXL', 'GPT-4V'],
datasets: [{
data: [30.0, 60.0, 50.0, 60.0, 70.0, 100.0],
backgroundColor: ['rgba(196, 123, 160, 0.6)', 'rgba(245, 123, 113, 0.6)', 'rgba(255, 208, 80, 0.6)', 'rgba(110, 194, 134, 0.6)', 'rgba(255, 153, 78, 0.6)', 'rgba(117, 209, 215, 0.6)'],
borderColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,0.4)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)'],
hoverBackgroundColor: ['rgba(196, 123, 160, 1)', 'rgba(245, 123, 113,1)', 'rgba(255, 208, 80, 1)', 'rgba(110, 194, 134, 1)', 'rgba(255, 153, 78, 1)', 'rgba(117, 209, 215, 1)']
}]
};
new Chart(document.getElementById('chart_Advertisements'), {
type: 'bar',
data: data_Advertisements ,
options: {
scales: {
y: {
beginAtZero: true,
min: 0,
max: 100,
ticks: {
stepSize: 20
}
},
x: {
display: false
}
},
plugins: {
legend: {
display: false
},
tooltip: {
}
}
}
});
});
</script>
<style>
.hidden {
display: none;
}
.sortable:hover {
cursor: pointer;
}
.asc::after {
content: ' ↑';
}
.desc::after {
content: ' ↓';
}
#toggleButton {
background-color: #ffffff;
border: 1px solid #dddddd;
color: #555555;
padding: 10px 20px;
text-align: center;
text-decoration: none;
display: inline-block;
font-size: 14px;
margin: 4px 2px;
cursor: pointer;
border-radius: 25px;
box-shadow: 0 4px 8px 0 rgba(0,0,0,0.2);
transition-duration: 0.4s;
}
#toggleButton:hover {
box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24), 0 17px 50px 0 rgba(0,0,0,0.19); /* 鼠标悬停时的阴影效果 */
}
table {
border-collapse: collapse;
width: 100%;
margin-top: 5px;
border: 1px solid #ddd;
font-size: 14px;
}
th, td {
text-align: left;
padding: 8px;
}
th {
background-color: #f2f2f2;
border-bottom: 2px solid #ddd;
}
td:hover {background-color: #ffffff;}
</style>
<script>
(function() {
var ws = new WebSocket('ws://' + window.location.host +
'/jb-server-page?reloadMode=RELOAD_ON_SAVE&'+
'referrer=' + encodeURIComponent(window.location.pathname));
ws.onmessage = function (msg) {
if (msg.data === 'reload') {
window.location.reload();
}
if (msg.data.startsWith('update-css ')) {
var messageId = msg.data.substring(11);
var links = document.getElementsByTagName('link');
for (var i = 0; i < links.length; i++) {
var link = links[i];
if (link.rel !== 'stylesheet') continue;
var clonedLink = link.cloneNode(true);
var newHref = link.href.replace(/(&|\?)jbUpdateLinksId=\d+/, "$1jbUpdateLinksId=" + messageId);
if (newHref !== link.href) {
clonedLink.href = newHref;
}
else {
var indexOfQuest = newHref.indexOf('?');
if (indexOfQuest >= 0) {
// to support ?foo#hash
clonedLink.href = newHref.substring(0, indexOfQuest + 1) + 'jbUpdateLinksId=' + messageId + '&' +
newHref.substring(indexOfQuest + 1);
}
else {
clonedLink.href += '?' + 'jbUpdateLinksId=' + messageId;
}
}
link.replaceWith(clonedLink);
}
}
};
})();
</script></body><div style="all: initial;"><div id="__hcfy__" style="all: initial;"></div></div></html>