Mqleet's picture
[update] templates
a3d3755
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>MARPLE | A Benchmark for Long-Horizon Inference</title>
<link rel="stylesheet" href="assets/css/main.css">
<link rel="apple-touch-icon" sizes="180x180" href="https://marple-benchmark.github.io/apple-touch-icon.png">
<link rel="icon" type="image/png" sizes="32x32" href="https://marple-benchmark.github.io/favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="https://marple-benchmark.github.io/favicon-16x16.png">
<link rel="manifest" href="https://marple-benchmark.github.io/site.webmanifest">
<meta property="og:type" content="website"/>
<meta property="og:image" content="https://marple.github.io/assets/img/card.png"/>
<meta property="og:image:type" content="image/png">
<meta property="og:url" content="https://marple.github.io/"/>
<meta property="og:title" content="MARPLE"/>
<meta property="og:description" content="A Benchmark for Long-Horizon Inference"/>
<!-- twitter card -->
<meta name="twitter:card" content="summary_large_image"/>
<meta name="twitter:title" content="MARPLE"/>
<meta name="twitter:description"
content="A Benchmark for Long-Horizon Inference"/>
<meta name="twitter:creator" content="@emilyzjin"/>
<!-- extra metadata for Slack unfurls -->
<!-- <meta name="twitter:label1" content="Published at"/>-->
<!-- <meta name="twitter:data1" content=""/>-->
<!-- <meta name="twitter:label2" content="Reading time"/>-->
<!-- <meta name="twitter:data2" content="10 minutes"/>-->
<!-- extra metadata — unknown support -->
<meta property="og:type" content="article"/>
<meta property="article:section" content="Research"/>
<meta property="article:tag" content="Benchmark"/>
<meta property="article:tag" content="Inference"/>
<meta property="article:tag" content="Machine Learning"/>
</head>
<body>
<div id="title_slide">
<div class="title_left">
<h1>MARPLE: A Benchmark for Long-Horizon Inference</h1>
<div class="author-container">
<div class="author-name"><a href="https://emilyzjin.github.io/" target="_blank">Emily Jin<sup>1</sup>*</a></div>
<div class="author-name"><a href="https://www.linkedin.com/in/zhuoyi-huang" target="_blank">Zhuoyi Huang<sup>1</sup>*</a></div>
<div class="author-name"><a href="https://janphilippfranken.github.io/" target="_blank">Jan-Philipp Fränken<sup>2</sup></a></div>
<div class="author-name"><a href="http://weiyuliu.com/" target="_blank">Weiyu Liu<sup>1</sup></a></div>
<div class="author-name"><a href="https://www.linkedin.com/in/hannah-cha" target="_blank">Hannah Cha<sup>1</sup></a></div>
</div>
<div class="author-container">
<div class="author-name"><a href="https://www.erikbrockbank.com/" target="_blank">Erik Brockbank<sup>2</sup></a></div>
<div class="author-name"><a href="https://sarahawu.github.io/" target="_blank">Sarah Wu<sup>2</sup></a></div>
<div class="author-name"><a href="https://ai.stanford.edu/~zharu/" target="_blank">Ruohan Zhang<sup>1</sup></a></div>
<div class="author-name"><a href="https://jiajunwu.com/" target="_blank">Jiajun Wu<sup>1</sup></a></div>
<div class="author-name"><a href="https://cicl.stanford.edu/member/tobias_gerstenberg/" target="_blank">Tobias Gerstenberg<sup>2</sup></a></div>
</div>
<div class="affiliation">
<p>
<sup>1</sup>Department of Computer Science
<sup>2</sup>Department of Psychology
<br><br>
<img src="assets/logos/SUSig-red.png" style="height: 40px">
</p>
</div>
<!-- <div class="venue">-->
<!-- <p>-->
<!-- <b>NeurIPS 2025</b>-->
<!-- </p>-->
<!-- </div>-->
<div class="button-container" style="text-align: center;">
<!-- <a href="https://arxiv.org" target="_blank" class="button"><i class="ai ai-arxiv"></i>&emsp14;arXiv</a> -->
<a href="https://arxiv.org/abs/2410.01926" target="_blank" class="button"><i class="fa-light fa-file"></i>&emsp14;arXiv</a>
<!-- <a href="https://x.com/" target="_blank" class="button"><i -->
<!-- class="fa-brands fa-x-twitter"></i>&emsp14;tl;dr</a> -->
<a href="https://github.com/marple-benchmark/marple" target="_blank" class="button"><i
class="fa-light fa-code"></i>&emsp14;Code</a>
<a href="https://drive.google.com/drive/folders/1zXsErNVOMYjBMWzTnmZS4e4aIljWlRce?usp=sharing" target="_blank" class="button"><i
class="fa-light fa-database"></i>&emsp14;Data</a>
</div>
<br>
<div class="allegrofail">
<div class="video_container">
<image src="assets/img/overview.png" width="100%">
<source src="assets/img/overview.png">
</image>
</div>
</div>
<br>
<div id="abstract">
<h1>Abstract</h1>
<p style="text-align: justify;">
Reconstructing past events requires reasoning across long time horizons. To figure out what happened,
humans draw on prior knowledge about the world and human behavior and integrate insights from various
sources of evidence including visual, language, and auditory cues. We introduce MARPLE, a benchmark for
evaluating long-horizon inference capabilities using multi-modal evidence. Our benchmark features agents
interacting with simulated households, supporting vision, language, and auditory stimuli, as well as
procedurally generated environments and agent behaviors. Inspired by classic ``whodunit'' stories, we ask
AI models and human participants to infer which agent caused a change in the environment based on a
step-by-step replay of what actually happened. The goal is to correctly identify the culprit as early as possible.
Our findings show that human participants outperform both traditional Monte Carlo simulation methods and an
LLM baseline (GPT-4) on this task. Compared to humans, traditional inference models are less robust and performant,
while GPT-4 has difficulty comprehending environmental changes. We analyze factors influencing inference performance
and ablate different modes of evidence, finding that all modes are valuable for performance. Overall, our
experiments demonstrate that the long-horizon, multimodal inference tasks in our benchmark present a challenge
to current models.
</p>
</div>
</div>
</div>
<hr class="rounded">
<div id="overview">
<h1 font-weight: bold;>MARPLE Overview</h1>
<p style="text-align: justify;">
MARPLE (in reference to Agatha Christie's Miss Marple) is a benchmark for long-horizon inference
based on multimodal evidence. The main goal of MARPLE is to test a model's ability to answer
“whodunit”-style questions in daily household scenarios, such as “who turned on the laundry?”
The inference problem requires choosing the correct agent from two potential suspects, given
knowledge about their prior behaviors and the state of the environment.
<br><br>
<b>Inference Scenario Setup.</b> Two agents, A and B, each perform a mission, such as “do laundry” and "change clothes."
To complete their mission, each agent must interact with the environment, causing changes in the world and leaving evidence of its activity.
A “whodunit” question is constructed by selecting a state that is unique to one agent’s trajectory. A state that is unique to agent A is
“laundry is on,” so we pose the question: "Which agent turned on the laundry?"
<br><br>
To answer “whodunit” questions, models must leverage evidence in the form of multimodal observations from each agent’s activity history.
<div class="allegrofail">
<div class="video_container">
<image id="inference_process" src="assets/img/inference_process.png" alt="Inference Process" width="100%"></image>
</div>
</div>
</p>
<p style="text-align: justify;">
<!-- <br><br> -->
<b>Evaluating Performance.</b> Inference ability is measured by the probability of correctly choosing the agent responsible for the query state.
We are interested in how much evidence is needed to make the correct inference: stronger models require less evidence and achieve high inference accuracy earlier.
</p>
<h1 font-weight: bold;">Key Contributions</h1>
<p style="text-align: justify;">
<style>
.inline-bullet {
display: block;
list-style-type: disc;
/* padding-left: 10px;
margin-right: 10px; */
}
.inline-bullet:before {
content: "• ";
}
</style>
The MARPLE benchmark makes 3 key contributions:
<span class="inline-bullet"><b>Inference Scenarios:</b> a set of 5 challenging inference scenarios, along with pre-collected datasets for training and evaluation and a evaluation metric.</span>
<span class="inline-bullet"><b>Household Simulator:</b> supports generation of diverse agent behaviors involving semantically rich activities, featuring multimodal evidence such as vision, language, and audio.</span>
<span class="inline-bullet"><b>Benchmarking Experiments:</b> evaluation of machine learning baselines (simulation with learned agent models and GPT-4) against human participants as a comparison standard.</span>
<p>
<h1 font-weight: bold;>Inference Scenarios</h1>
<p style="text-align: justify;">
The MARPLE Benchmark features 10 diverse, long-horizon missions, which are paired to create 5
challenging inference scenarios that offer a balanced representation of the complexity and diversity
offered by pairing missions. Each mission is accompanied by both train and test datasets: two
train datasets, each containing 5000 agent trajectories (one for evaluating in-distribution
performance and the other for out-of-distribution performance), and a test dataset with 500
diverse agent trajectories.
<p>
<h1 font-weight: bold;>Household Simulator</h1>
<p style="text-align: justify;">
<style>
.inline-bullet {
display: block;
list-style-type: disc;
/* padding-left: 10px;
margin-right: 10px; */
}
.inline-bullet:before {
content: "• ";
}
</style>
To support our benchmark, we introduce the MARPLE Household Simulator, designed to support complex scenarios and generate diverse data with the following key components:
<span class="inline-bullet"><b>Multimodal Environment:</b> fast, procedural generation with visual, language, auditory stimuli</span>
<span class="inline-bullet"><b>Hierarchical Agent Planner:</b> for procedural generation of diverse agent behaviors</span>
<span class="inline-bullet"><b>Human User Interface:</b> intuitive UI to support cognitive science experiments with humans</span>
<div class="allegrofail">
<div class="video_container">
<image id="household_simulator" src="assets/img/household_simulator.png" alt="Simulator Backend" style="width: 100%; height: auto;">
<!-- <div class="caption">
<p> MARPLE Household Simulator (backend). Given a mission and environment configuration file,
the simulator procedurally generates an environment with multimodal support.
</p>
</div> -->
</div>
</div>
<!-- <div class="allegrofail">
<div class="video_container">
<image id="planner" src="assets/img/planner.png" alt="Agent Planner" style="width: 50%; height: auto; text-align: center;"></image>
<div class="caption">
<p> A hierarchical planner for procedural generation of agent behaviors. A high-level planner samples a mission,
a finite state machine breaks it into subgoals, and a low-level planner determines an action sequence.
</p>
</div>
</div>
</div> -->
</p>
<h1 font-weight: bold;>Inference Methods</h1>
<p style="text-align: justify;">
<b>Mental Simulation with Learned Agent Models.</b> We combine Monte Carlo Tree Search (MCTS) with learned agent policy models for mental simulation.
Agent policies are learned through imitation learning on past behaviors, and they are used during inference to predict actions for Monte Carlo
rollouts. Different variations leverage visual, audio, and/or language evidence.
<!-- This inference method uses Monte Carlo Tree Search (MCTS) combined with learned agent policy models for mental simulation.
We learn agent policy models using imitation learning on past agent behaviors. During inference, this method performs multiple Monte Carlo rollouts given evidence from a specified timestep, using the learned policy model
to predicts actions and calculates the probability of each agent reaching the query state. Four variations of this baseline method are
explored, which leverage visual, audio, and/or language evidence. -->
</p>
<p style="text-align: justify;">
<b>LLM.</b> We ask GPT-4 to predict which agent is more likely to have caused the query state given visual observations of both agents at
two consecutive timesteps. GPT-4 must reason about changes in the consecutive states and consider how the agent may reach the query state.
<!-- The states are represented by a standard scene graph representation, containing a set of nodes (representing an agent or object) and
directed edges (representing object states and physical relations). -->
</p>
<p style="text-align: justify;">
<b>Human Baseline.</b> Human participants answer the inference question, given side-by-side visual observations of agent trajectories, presented one step at a time.
This allows participants to build an incremental understanding of agent trajectories and compare behaviors within the scenario.
<!-- <div class="allegrofail">
<div class="video_container">
<image id="human_ui" src="assets/img/human_ui.png" alt="Human UI" style="width: 100%; height: auto;">
</div>
</div> -->
</p>
<h1 font-weight: bold;>Benchmarking Experiments</h1>
<p style="text-align: justify;">
<style>
.inline-bullet {
display: block;
list-style-type: disc;
padding-top: 9px;
/* padding-left: 10px;
margin-right: 10px; */
}
.inline-bullet:before {
content: "• ";
}
</style>
We run experiments on all 5 inference scenarios, and we find that MARPLE is very challenging for all baselines.
We focus our evaluation on <i>how early</i> the methods make the correct inference, rather than convergence itself, and we observe that:
<span class="inline-bullet"><b>Mental Simulation Models:</b> generally achieve higher accuracy and consistency than GPT-4, demonstrating the benefit of explicitly performing step-by-step mental simulations.</span>
<span class="inline-bullet"><b>GPT-4:</b> performs competitively but sometimes fails to converge due to its bias toward changes in the agents' states rather than the environment.</span>
<span class="inline-bullet"><b>Human Participants:</b> provide a strong upper bound on performance. They outperform all models and achieve higher accuracies given less evidence, even without significant training.</span>
<div class="allegrofail">
<div class="video_container">
<image id="main_results" src="assets/img/main_results.png" alt="Inference Accuracy" style="width: 100%; height: auto;">
<div class="caption">
<p> Performance for each baseline across scenarios. Inference scenarios are presented in order of increasing difficulty from left to right, top to bottom. Error bands correspond to 95% CI intervals across tested trajectories.
</p>
</div>
</div>
</div>
</p>
<p style="text-align: justify;">
<b>Generalization Capabilities of Mental Simulation.</b> Multimodal observations improve the mental simulation model’s performance in-distribution,
but they struggle to generalize to novel environments. The performance gap between humans and the best mental simulation method increases from 10% to 33% less evidence out-of-distribution,
highlighting significant room for improvement in building robust and generalizable inference models.
<div class="allegrofail">
<div class="video_container">
<image id="generalization_results" src="assets/img/generalization_results.png" alt="Generalization Accuracy" style="width: 100%; height: auto;">
</div>
</div>
</p>
<h1 font-weight: bold;>Conclusion</h1>
<p style="text-align: justify;">
We introduced MARPLE, a novel benchmark for evaluating long-horizon, multimodal inference capabilities.
We find that current AI models, including Monte Carlo tree search and LLM methods, still fall short of
humans in leveraging multimodal stimuli and performing long-horizon inference. We hope that MARPLE
facilitates further AI and cognitive science research to bridge the gap between artificial and human
cognitive abilities in complex, real-world inference scenarios.
</p>
<h1 font-weight: bold;>Acknowledgements</h1>
<p> This work was in part supported by a grant from the Stanford Institute for Human-Centered Artificial Intelligence (HAI), NSF CCRI #2120095, and ONR MURI N00014-22-1-2740.
</p>
<!-- <h1>BibTeX</h1>
<p class="bibtex">@article{TODO,<br>
&nbsp;&nbsp;&nbsp;&nbsp;title &nbsp;&nbsp;= {MARPLE: A Benchmark for Long-Horizon Inference},<br>
&nbsp;&nbsp;&nbsp;&nbsp;author &nbsp;= {Emily Jin, Zhuoyi Huang, Jan-Philipp Fränken, Weiyu Liu,
Hannah Cha, Erik Brockbank, Sarah Wu, Ruohan Zhang, Jiajun Wu, and Tobias Gerstenberg
},<br>
&nbsp;&nbsp;&nbsp;&nbsp;year &nbsp;&nbsp;&nbsp;= {2024},<br>
&nbsp;&nbsp;&nbsp;&nbsp;journal = {arXiv preprint arXiv: }<br>
}
</p>
<br> -->
</div>
</body>
<script src="assets/js/full_screen_video.js"></script>
<script src="assets/js/carousel.js"></script>
</html>