Spaces:
Running
on
Zero
Running
on
Zero
DarkAcorn
commited on
Commit
·
21a2ee2
1
Parent(s):
9fc49a0
testing spaces
Browse files- app.py +245 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
from snac import SNAC
|
| 3 |
+
import torch
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 6 |
+
from huggingface_hub import snapshot_download
|
| 7 |
+
from dotenv import load_dotenv
|
| 8 |
+
load_dotenv()
|
| 9 |
+
|
| 10 |
+
# Check if CUDA is available
|
| 11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
|
| 13 |
+
print("Loading SNAC model...")
|
| 14 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
| 15 |
+
snac_model = snac_model.to(device)
|
| 16 |
+
|
| 17 |
+
model_name = "MrDragonFox/mOrpheus_3B-1Base_early_preview-v1-25000"
|
| 18 |
+
|
| 19 |
+
# Download only model config and safetensors
|
| 20 |
+
snapshot_download(
|
| 21 |
+
repo_id=model_name,
|
| 22 |
+
allow_patterns=[
|
| 23 |
+
"config.json",
|
| 24 |
+
"*.safetensors",
|
| 25 |
+
"model.safetensors.index.json",
|
| 26 |
+
],
|
| 27 |
+
ignore_patterns=[
|
| 28 |
+
"optimizer.pt",
|
| 29 |
+
"pytorch_model.bin",
|
| 30 |
+
"training_args.bin",
|
| 31 |
+
"scheduler.pt",
|
| 32 |
+
"tokenizer.json",
|
| 33 |
+
"tokenizer_config.json",
|
| 34 |
+
"special_tokens_map.json",
|
| 35 |
+
"vocab.json",
|
| 36 |
+
"merges.txt",
|
| 37 |
+
"tokenizer.*"
|
| 38 |
+
]
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
| 42 |
+
model.to(device)
|
| 43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 44 |
+
print(f"Orpheus model loaded to {device}")
|
| 45 |
+
|
| 46 |
+
# Process text prompt
|
| 47 |
+
def process_prompt(prompt, voice, tokenizer, device):
|
| 48 |
+
prompt = f"{voice}: {prompt}"
|
| 49 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
| 50 |
+
|
| 51 |
+
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
|
| 52 |
+
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
|
| 53 |
+
|
| 54 |
+
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
|
| 55 |
+
|
| 56 |
+
# No padding needed for single input
|
| 57 |
+
attention_mask = torch.ones_like(modified_input_ids)
|
| 58 |
+
|
| 59 |
+
return modified_input_ids.to(device), attention_mask.to(device)
|
| 60 |
+
|
| 61 |
+
# Parse output tokens to audio
|
| 62 |
+
def parse_output(generated_ids):
|
| 63 |
+
token_to_find = 128257
|
| 64 |
+
token_to_remove = 128258
|
| 65 |
+
|
| 66 |
+
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
| 67 |
+
|
| 68 |
+
if len(token_indices[1]) > 0:
|
| 69 |
+
last_occurrence_idx = token_indices[1][-1].item()
|
| 70 |
+
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
| 71 |
+
else:
|
| 72 |
+
cropped_tensor = generated_ids
|
| 73 |
+
|
| 74 |
+
processed_rows = []
|
| 75 |
+
for row in cropped_tensor:
|
| 76 |
+
masked_row = row[row != token_to_remove]
|
| 77 |
+
processed_rows.append(masked_row)
|
| 78 |
+
|
| 79 |
+
code_lists = []
|
| 80 |
+
for row in processed_rows:
|
| 81 |
+
row_length = row.size(0)
|
| 82 |
+
new_length = (row_length // 7) * 7
|
| 83 |
+
trimmed_row = row[:new_length]
|
| 84 |
+
trimmed_row = [t - 128266 for t in trimmed_row]
|
| 85 |
+
code_lists.append(trimmed_row)
|
| 86 |
+
|
| 87 |
+
return code_lists[0] # Return just the first one for single sample
|
| 88 |
+
|
| 89 |
+
# Redistribute codes for audio generation
|
| 90 |
+
def redistribute_codes(code_list, snac_model):
|
| 91 |
+
device = next(snac_model.parameters()).device # Get the device of SNAC model
|
| 92 |
+
|
| 93 |
+
layer_1 = []
|
| 94 |
+
layer_2 = []
|
| 95 |
+
layer_3 = []
|
| 96 |
+
for i in range((len(code_list)+1)//7):
|
| 97 |
+
layer_1.append(code_list[7*i])
|
| 98 |
+
layer_2.append(code_list[7*i+1]-4096)
|
| 99 |
+
layer_3.append(code_list[7*i+2]-(2*4096))
|
| 100 |
+
layer_3.append(code_list[7*i+3]-(3*4096))
|
| 101 |
+
layer_2.append(code_list[7*i+4]-(4*4096))
|
| 102 |
+
layer_3.append(code_list[7*i+5]-(5*4096))
|
| 103 |
+
layer_3.append(code_list[7*i+6]-(6*4096))
|
| 104 |
+
|
| 105 |
+
# Move tensors to the same device as the SNAC model
|
| 106 |
+
codes = [
|
| 107 |
+
torch.tensor(layer_1, device=device).unsqueeze(0),
|
| 108 |
+
torch.tensor(layer_2, device=device).unsqueeze(0),
|
| 109 |
+
torch.tensor(layer_3, device=device).unsqueeze(0)
|
| 110 |
+
]
|
| 111 |
+
|
| 112 |
+
audio_hat = snac_model.decode(codes)
|
| 113 |
+
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
|
| 114 |
+
|
| 115 |
+
# Main generation function
|
| 116 |
+
@spaces.GPU()
|
| 117 |
+
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
| 118 |
+
if not text.strip():
|
| 119 |
+
return None
|
| 120 |
+
|
| 121 |
+
try:
|
| 122 |
+
progress(0.1, "Processing text...")
|
| 123 |
+
input_ids, attention_mask = process_prompt(text, voice, tokenizer, device)
|
| 124 |
+
|
| 125 |
+
progress(0.3, "Generating speech tokens...")
|
| 126 |
+
with torch.no_grad():
|
| 127 |
+
generated_ids = model.generate(
|
| 128 |
+
input_ids=input_ids,
|
| 129 |
+
attention_mask=attention_mask,
|
| 130 |
+
max_new_tokens=max_new_tokens,
|
| 131 |
+
do_sample=True,
|
| 132 |
+
temperature=temperature,
|
| 133 |
+
top_p=top_p,
|
| 134 |
+
repetition_penalty=repetition_penalty,
|
| 135 |
+
num_return_sequences=1,
|
| 136 |
+
eos_token_id=128258,
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
progress(0.6, "Processing speech tokens...")
|
| 140 |
+
code_list = parse_output(generated_ids)
|
| 141 |
+
|
| 142 |
+
progress(0.8, "Converting to audio...")
|
| 143 |
+
audio_samples = redistribute_codes(code_list, snac_model)
|
| 144 |
+
|
| 145 |
+
return (24000, audio_samples) # Return sample rate and audio
|
| 146 |
+
except Exception as e:
|
| 147 |
+
print(f"Error generating speech: {e}")
|
| 148 |
+
return None
|
| 149 |
+
|
| 150 |
+
# Examples for the UI
|
| 151 |
+
examples = [
|
| 152 |
+
["Hey there my name is Baddy, <chuckle> and I'm a speech generation model that can sound like a person.", "baddy", 0.6, 0.95, 1.1, 1200],
|
| 153 |
+
["I've also been taught to understand and produce paralinguistic things <sigh> like sighing, or <laugh> laughing, or <yawn> yawning!", "baddy", 0.7, 0.95, 1.1, 1200],
|
| 154 |
+
["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... <gasp> well, lets just say a lot of parameters.", "baddy", 0.6, 0.9, 1.2, 1200],
|
| 155 |
+
["Sometimes when I talk too much, I need to <cough> excuse myself. <sniffle> The weather has been quite cold lately.", "baddy", 0.65, 0.9, 1.1, 1200],
|
| 156 |
+
["Public speaking can be challenging. <groan> But with enough practice, anyone can become better at it.", "baddy", 0.7, 0.95, 1.1, 1200],
|
| 157 |
+
["The hike was exhausting but the view from the top was absolutely breathtaking! <sigh> It was totally worth it.", "baddy", 0.65, 0.9, 1.15, 1200],
|
| 158 |
+
["Did you hear that joke? <laugh> I couldn't stop laughing when I first heard it. <chuckle> It's still funny.", "baddy", 0.7, 0.95, 1.1, 1200],
|
| 159 |
+
["After running the marathon, I was so tired <yawn> and needed a long rest. <sigh> But I felt accomplished.", "baddy", 0.6, 0.95, 1.1, 1200]
|
| 160 |
+
]
|
| 161 |
+
|
| 162 |
+
# Available voices
|
| 163 |
+
VOICES = ["baddy"]
|
| 164 |
+
|
| 165 |
+
# Available Emotive Tags
|
| 166 |
+
EMOTIVE_TAGS = ["`<laugh>`", "`<chuckle>`", "`<sigh>`", "`<cough>`", "`<sniffle>`", "`<groan>`", "`<yawn>`", "`<gasp>`"]
|
| 167 |
+
|
| 168 |
+
# Create Gradio interface
|
| 169 |
+
with gr.Blocks(title="Morpheus Text-to-Speech - uncensored orpheus") as demo:
|
| 170 |
+
gr.Markdown(f"""
|
| 171 |
+
# 🎵 Morpheus Text-to-Speech
|
| 172 |
+
Enter your text below and hear it converted to natural-sounding speech with the Morpheus TTS model.
|
| 173 |
+
|
| 174 |
+
## Tips for better prompts:
|
| 175 |
+
- Add paralinguistic elements like {", ".join(EMOTIVE_TAGS)} or `uhm` for more human-like speech.
|
| 176 |
+
- Longer text prompts generally work better than very short phrases
|
| 177 |
+
- Increasing `repetition_penalty` and `temperature` makes the model speak faster.
|
| 178 |
+
""")
|
| 179 |
+
with gr.Row():
|
| 180 |
+
with gr.Column(scale=3):
|
| 181 |
+
text_input = gr.Textbox(
|
| 182 |
+
label="Text to speak",
|
| 183 |
+
placeholder="Enter your text here...",
|
| 184 |
+
lines=5
|
| 185 |
+
)
|
| 186 |
+
voice = gr.Dropdown(
|
| 187 |
+
choices=VOICES,
|
| 188 |
+
value="baddy",
|
| 189 |
+
label="Voice"
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 193 |
+
temperature = gr.Slider(
|
| 194 |
+
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
|
| 195 |
+
label="Temperature",
|
| 196 |
+
info="Higher values (0.7-1.0) create more expressive but less stable speech"
|
| 197 |
+
)
|
| 198 |
+
top_p = gr.Slider(
|
| 199 |
+
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
| 200 |
+
label="Top P",
|
| 201 |
+
info="Nucleus sampling threshold"
|
| 202 |
+
)
|
| 203 |
+
repetition_penalty = gr.Slider(
|
| 204 |
+
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
|
| 205 |
+
label="Repetition Penalty",
|
| 206 |
+
info="Higher values discourage repetitive patterns"
|
| 207 |
+
)
|
| 208 |
+
max_new_tokens = gr.Slider(
|
| 209 |
+
minimum=100, maximum=2000, value=1200, step=100,
|
| 210 |
+
label="Max Length",
|
| 211 |
+
info="Maximum length of generated audio (in tokens)"
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
with gr.Row():
|
| 215 |
+
submit_btn = gr.Button("Generate Speech", variant="primary")
|
| 216 |
+
clear_btn = gr.Button("Clear")
|
| 217 |
+
|
| 218 |
+
with gr.Column(scale=2):
|
| 219 |
+
audio_output = gr.Audio(label="Generated Speech", type="numpy")
|
| 220 |
+
|
| 221 |
+
# Set up examples
|
| 222 |
+
gr.Examples(
|
| 223 |
+
examples=examples,
|
| 224 |
+
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
| 225 |
+
outputs=audio_output,
|
| 226 |
+
fn=generate_speech,
|
| 227 |
+
cache_examples=True,
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
# Set up event handlers
|
| 231 |
+
submit_btn.click(
|
| 232 |
+
fn=generate_speech,
|
| 233 |
+
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
| 234 |
+
outputs=audio_output
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
clear_btn.click(
|
| 238 |
+
fn=lambda: (None, None),
|
| 239 |
+
inputs=[],
|
| 240 |
+
outputs=[text_input, audio_output]
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
# Launch the app
|
| 244 |
+
if __name__ == "__main__":
|
| 245 |
+
demo.queue().launch(share=False, ssr_mode=False)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
snac
|
| 2 |
+
python-dotenv
|
| 3 |
+
transformers
|
| 4 |
+
torch
|
| 5 |
+
spaces
|