Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
# Import necessary libraries
|
| 2 |
import os
|
| 3 |
-
import torch
|
| 4 |
from PIL import Image
|
|
|
|
| 5 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 6 |
import gradio as gr
|
| 7 |
import openai
|
|
@@ -11,10 +11,15 @@ model_name = "beingamit99/car_damage_detection"
|
|
| 11 |
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 12 |
model = AutoModelForImageClassification.from_pretrained(model_name)
|
| 13 |
|
| 14 |
-
# Set your OpenAI API key
|
| 15 |
openai_api_key = os.getenv("OpenAI4oMini")
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Dropdown Options
|
| 20 |
car_companies = ["Select", "Toyota", "Honda", "Ford", "BMW", "Mercedes", "Audi", "Hyundai", "Kia", "Nissan"]
|
|
@@ -37,12 +42,13 @@ countries = ["Select", "Pakistan", "USA", "UK", "Canada", "Australia", "Germany"
|
|
| 37 |
# Function to Estimate Repair Cost using GPT-4.0 Mini
|
| 38 |
def estimate_repair_cost(damage_type, company, model, year, country):
|
| 39 |
prompt = (
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
)
|
| 43 |
|
| 44 |
try:
|
| 45 |
-
|
|
|
|
| 46 |
model="gpt-4o-mini",
|
| 47 |
messages=[
|
| 48 |
{"role": "system", "content": "You are an expert in car repair cost estimation."},
|
|
@@ -51,6 +57,7 @@ def estimate_repair_cost(damage_type, company, model, year, country):
|
|
| 51 |
temperature=0.5,
|
| 52 |
max_tokens=100
|
| 53 |
)
|
|
|
|
| 54 |
return response['choices'][0]['message']['content'].strip()
|
| 55 |
except Exception as e:
|
| 56 |
print(f"Error in GPT-4.0 API call: {e}")
|
|
@@ -85,11 +92,11 @@ with gr.Blocks() as interface:
|
|
| 85 |
|
| 86 |
with gr.Row():
|
| 87 |
with gr.Column():
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
|
| 94 |
submit_button = gr.Button("Estimate Repair Cost")
|
| 95 |
output = gr.JSON(label="Result")
|
|
|
|
| 1 |
# Import necessary libraries
|
| 2 |
import os
|
|
|
|
| 3 |
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 6 |
import gradio as gr
|
| 7 |
import openai
|
|
|
|
| 11 |
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 12 |
model = AutoModelForImageClassification.from_pretrained(model_name)
|
| 13 |
|
| 14 |
+
# Set your OpenAI API key
|
| 15 |
openai_api_key = os.getenv("OpenAI4oMini")
|
| 16 |
+
|
| 17 |
+
# Validate API Key
|
| 18 |
+
if openai_api_key is None:
|
| 19 |
+
raise ValueError("OpenAI API key is not set. Make sure to set the OpenAI4oMini secret in Hugging Face.")
|
| 20 |
+
|
| 21 |
+
# Initialize OpenAI Client
|
| 22 |
+
client = openai.OpenAI(api_key=openai_api_key)
|
| 23 |
|
| 24 |
# Dropdown Options
|
| 25 |
car_companies = ["Select", "Toyota", "Honda", "Ford", "BMW", "Mercedes", "Audi", "Hyundai", "Kia", "Nissan"]
|
|
|
|
| 42 |
# Function to Estimate Repair Cost using GPT-4.0 Mini
|
| 43 |
def estimate_repair_cost(damage_type, company, model, year, country):
|
| 44 |
prompt = (
|
| 45 |
+
f"Estimate the repair cost for {damage_type} on a {year} {company} {model} in {country}. "
|
| 46 |
+
f"Provide the approximate total cost in local currency with your confidence level, concisely in 2 lines."
|
| 47 |
+
)
|
| 48 |
|
| 49 |
try:
|
| 50 |
+
# Using client for API call
|
| 51 |
+
response = client.ChatCompletion.create(
|
| 52 |
model="gpt-4o-mini",
|
| 53 |
messages=[
|
| 54 |
{"role": "system", "content": "You are an expert in car repair cost estimation."},
|
|
|
|
| 57 |
temperature=0.5,
|
| 58 |
max_tokens=100
|
| 59 |
)
|
| 60 |
+
# Correctly access the response content
|
| 61 |
return response['choices'][0]['message']['content'].strip()
|
| 62 |
except Exception as e:
|
| 63 |
print(f"Error in GPT-4.0 API call: {e}")
|
|
|
|
| 92 |
|
| 93 |
with gr.Row():
|
| 94 |
with gr.Column():
|
| 95 |
+
image_input = gr.Image(type="pil", label="Upload Car Image")
|
| 96 |
+
company_input = gr.Dropdown(choices=car_companies, label="Car Company", value="Select")
|
| 97 |
+
model_input = gr.Dropdown(choices=car_models, label="Car Model", value="Select")
|
| 98 |
+
year_input = gr.Dropdown(choices=years, label="Year of Manufacture", value=years[-1])
|
| 99 |
+
country_input = gr.Dropdown(choices=countries, label="Your Country", value="Select")
|
| 100 |
|
| 101 |
submit_button = gr.Button("Estimate Repair Cost")
|
| 102 |
output = gr.JSON(label="Result")
|