File size: 31,857 Bytes
84e3bf5 18e754a 84e3bf5 2cca11c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 |
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse
from pydantic import BaseModel
from typing import List, Optional, Dict
import google.generativeai as genai
import os
from datetime import datetime
import uuid
import json
from pathlib import Path
from reportlab.lib.pagesizes import letter, A4
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak, Table, TableStyle
from reportlab.lib import colors
from reportlab.lib.enums import TA_CENTER, TA_LEFT, TA_JUSTIFY
from reportlab.pdfgen import canvas
# Configure Gemini API
os.environ["GOOGLE_API_KEY"] = GOOGLE_API_KEY
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
MODEL_ID = "gemini-2.0-flash-exp"
# Create storage directories
STORAGE_DIR = Path("consultation_storage")
STORAGE_DIR.mkdir(exist_ok=True)
PDF_DIR = Path("consultation_pdfs")
PDF_DIR.mkdir(exist_ok=True)
# System prompt (same as before)
DOCTOR_SYSTEM_PROMPT = """
You are Dr. HealBot, a calm, knowledgeable, and empathetic virtual doctor.
GOAL:
Hold a natural, focused conversation with the patient to understand their health issue and offer helpful preliminary medical guidance.
CONVERSATION LOGIC:
- Ask only relevant and concise medical questions necessary for diagnosing the illness.
- Each question should help clarify symptoms or narrow possible causes.
- Stop asking once enough information is collected for a basic assessment.
- Then, provide a structured, friendly, and visually clear medical response using headings, emojis, and bullet points.
FINAL RESPONSE FORMAT:
When giving your full assessment, use this markdown-styled format:
π©Ί Based on what you've told me...
Brief summary of what the patient described.
π‘ Possible Causes (Preliminary)
- List 1β2 possible conditions using phrases like "It could be" or "This sounds like".
- Include a disclaimer that this is not a confirmed diagnosis.
π Suggested Over-the-Counter Medicines
- Generic medicine names only (e.g., "Paracetamol 500mg every 6 hours if fever or pain")
- Mention to check packaging or consult a pharmacist for dosage confirmation.
π₯ Lifestyle & Home Care Tips
- 2β3 practical suggestions (rest, hydration, warm compress, balanced diet, etc.)
β When to See a Real Doctor
- 2β3 warning signs or conditions when urgent medical care is needed.
π
Follow-Up Advice
- Brief recommendation for self-care or follow-up timing (e.g., "If not improving in 3 days, visit a clinic.")
TONE & STYLE:
- Speak like a real, caring doctor β short, clear, and empathetic (1β2 sentences per reply).
- Use plain language, no jargon.
- Only one question per turn unless clarification is essential.
- Keep tone warm, calm, and professional.
- Early messages: short questions only.
- Final message: structured output with emojis and headings.
IMPORTANT:
- Always emphasize that this is preliminary guidance and not a substitute for professional care.
- Never make definitive diagnoses; use phrases like "it sounds like" or "it could be".
- If symptoms seem serious, always recommend urgent medical attention.
CONVERSATION FLOW:
1. Ask about the main symptom.
2. Ask about its duration, severity, and any triggers.
3. Ask about accompanying symptoms.
4. Ask about medical history, allergies, or medications.
5. Then, provide your structured assessment as described above.
"""
# =====================================================
# PDF GENERATION FUNCTIONS
# =====================================================
def generate_pdf_summary(session_id: str, summary_text: str, patient_data: Dict, history: List[Dict]) -> str:
"""Generate a professional PDF summary of the consultation"""
pdf_filename = f"{session_id}_summary.pdf"
pdf_path = PDF_DIR / pdf_filename
# Create PDF document
doc = SimpleDocTemplate(str(pdf_path), pagesize=letter,
rightMargin=72, leftMargin=72,
topMargin=72, bottomMargin=18)
# Container for the 'Flowable' objects
elements = []
# Define styles
styles = getSampleStyleSheet()
# Custom styles
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=24,
textColor=colors.HexColor('#667eea'),
spaceAfter=30,
alignment=TA_CENTER,
fontName='Helvetica-Bold'
)
heading_style = ParagraphStyle(
'CustomHeading',
parent=styles['Heading2'],
fontSize=16,
textColor=colors.HexColor('#667eea'),
spaceAfter=12,
spaceBefore=12,
fontName='Helvetica-Bold'
)
normal_style = ParagraphStyle(
'CustomNormal',
parent=styles['Normal'],
fontSize=11,
spaceAfter=12,
alignment=TA_JUSTIFY,
leading=14
)
# Add Title
elements.append(Paragraph("π©Ί AI DOCTOR CONSULTATION SUMMARY", title_style))
elements.append(Spacer(1, 0.3*inch))
# Add horizontal line
elements.append(Spacer(1, 0.1*inch))
# Patient Information Table
patient_info_data = [
['Patient Name:', patient_data.get('name', 'N/A')],
['Age:', patient_data.get('age', 'N/A')],
['Session ID:', session_id[:20] + '...'],
['Consultation Date:', datetime.now().strftime('%B %d, %Y at %I:%M %p')],
['Total Messages:', str(len(history))]
]
patient_table = Table(patient_info_data, colWidths=[2*inch, 4*inch])
patient_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (0, -1), colors.HexColor('#f0f0f0')),
('TEXTCOLOR', (0, 0), (-1, -1), colors.black),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (0, -1), 'Helvetica-Bold'),
('FONTNAME', (1, 0), (1, -1), 'Helvetica'),
('FONTSIZE', (0, 0), (-1, -1), 10),
('BOTTOMPADDING', (0, 0), (-1, -1), 8),
('TOPPADDING', (0, 0), (-1, -1), 8),
('GRID', (0, 0), (-1, -1), 1, colors.grey)
]))
elements.append(patient_table)
elements.append(Spacer(1, 0.3*inch))
# Add Consultation Summary
elements.append(Paragraph("CONSULTATION SUMMARY", heading_style))
# Process summary text - split by lines and convert to paragraphs
summary_lines = summary_text.split('\n')
for line in summary_lines:
if line.strip():
# Replace emojis with text equivalents for PDF compatibility
line = line.replace('π©Ί', '[Medical] ')
line = line.replace('π‘', '[Insight] ')
line = line.replace('π', '[Medicine] ')
line = line.replace('π₯', '[Lifestyle] ')
line = line.replace('β οΈ', '[Warning] ')
line = line.replace('β ', '[Warning] ')
line = line.replace('π
', '[Follow-up] ')
line = line.replace('β', '-')
# Check if it's a heading (starts with **)
if line.strip().startswith('**') and line.strip().endswith('**'):
elements.append(Paragraph(line.strip('*'), heading_style))
else:
elements.append(Paragraph(line, normal_style))
elements.append(Spacer(1, 0.3*inch))
# Add Conversation History
elements.append(PageBreak())
elements.append(Paragraph("CONVERSATION HISTORY", heading_style))
elements.append(Spacer(1, 0.2*inch))
for i, msg in enumerate(history, 1):
role = "DOCTOR" if msg['role'] == 'assistant' else "PATIENT"
timestamp = msg.get('timestamp', 'N/A')
role_style = ParagraphStyle(
f'Role{i}',
parent=styles['Normal'],
fontSize=10,
textColor=colors.HexColor('#667eea') if role == "DOCTOR" else colors.HexColor('#28a745'),
fontName='Helvetica-Bold',
spaceAfter=4
)
elements.append(Paragraph(f"{role} ({timestamp}):", role_style))
content = msg['content'].replace('π©Ί', '').replace('π‘', '').replace('π', '')
content = content.replace('π₯', '').replace('β οΈ', '').replace('β ', '').replace('π
', '')
elements.append(Paragraph(content, normal_style))
elements.append(Spacer(1, 0.15*inch))
# Add disclaimer at the end
elements.append(Spacer(1, 0.3*inch))
disclaimer_style = ParagraphStyle(
'Disclaimer',
parent=styles['Normal'],
fontSize=9,
textColor=colors.red,
alignment=TA_CENTER,
fontName='Helvetica-Bold',
borderColor=colors.red,
borderWidth=1,
borderPadding=10,
spaceAfter=12
)
elements.append(Paragraph(
"β IMPORTANT DISCLAIMER β <br/>" +
"This is a preliminary AI-generated consultation for informational purposes only.<br/>" +
"It is NOT a substitute for professional medical advice, diagnosis, or treatment.<br/>" +
"Always seek the advice of a qualified healthcare provider with any questions regarding a medical condition.",
disclaimer_style
))
# Build PDF
doc.build(elements)
return pdf_filename
# =====================================================
# STORAGE FUNCTIONS (same as before)
# =====================================================
def save_session_to_json(session_id: str, memory: 'ConversationMemory'):
"""Save session data to JSON file"""
file_path = STORAGE_DIR / f"{session_id}.json"
session_data = {
"session_id": session_id,
"created_at": memory.created_at.isoformat(),
"last_updated": datetime.now().isoformat(),
"patient_data": memory.patient_data,
"questions_asked": memory.questions_asked,
"history": memory.history,
"message_count": len(memory.history),
"pdf_filename": getattr(memory, 'pdf_filename', None)
}
with open(file_path, 'w', encoding='utf-8') as f:
json.dump(session_data, f, indent=2, ensure_ascii=False)
def load_session_from_json(session_id: str) -> Optional[Dict]:
"""Load session data from JSON file"""
file_path = STORAGE_DIR / f"{session_id}.json"
if not file_path.exists():
return None
with open(file_path, 'r', encoding='utf-8') as f:
return json.load(f)
def list_all_sessions() -> List[Dict]:
"""List all stored sessions"""
sessions_list = []
for file_path in STORAGE_DIR.glob("*.json"):
try:
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
sessions_list.append({
"session_id": data["session_id"],
"created_at": data["created_at"],
"last_updated": data.get("last_updated", data["created_at"]),
"patient_name": data["patient_data"].get("name", "Unknown"),
"message_count": data["message_count"],
"has_pdf": data.get("pdf_filename") is not None
})
except Exception as e:
print(f"Error reading {file_path}: {e}")
return sorted(sessions_list, key=lambda x: x["last_updated"], reverse=True)
# =====================================================
# MEMORY MANAGEMENT (same as before)
# =====================================================
class ConversationMemory:
"""Manages short-term memory for each session"""
def __init__(self, max_messages: int = 20, session_id: str = None):
self.max_messages = max_messages
self.history = []
self.patient_data = {}
self.created_at = datetime.now()
self.questions_asked = 0
self.session_id = session_id
self.pdf_filename = None
def add_message(self, role: str, content: str):
"""Add message to history with memory management"""
self.history.append({
"role": role,
"content": content,
"timestamp": datetime.now().isoformat()
})
if role == "assistant" and "?" in content:
self.questions_asked += 1
if len(self.history) > self.max_messages:
self.history = [self.history[0]] + self.history[-(self.max_messages-1):]
if self.session_id:
save_session_to_json(self.session_id, self)
def extract_patient_info(self, message: str):
"""Extract and store patient information from conversation"""
message_lower = message.lower()
if any(word in message_lower for word in ["name is", "i'm", "i am", "im"]):
words = message.split()
for i, word in enumerate(words):
if word.lower() in ["is", "i'm", "am", "im"] and i + 1 < len(words):
self.patient_data["name"] = words[i + 1].strip(".,!?")
if "year" in message_lower or "age" in message_lower:
import re
age_match = re.search(r'\b(\d{1,3})\b', message)
if age_match:
self.patient_data["age"] = age_match.group(1)
if "fever" in message_lower or "pain" in message_lower or "sick" in message_lower:
self.patient_data["has_symptoms"] = True
def should_give_recommendations(self) -> bool:
"""Check if we should provide recommendations now"""
return (
self.questions_asked >= 7 or
self.patient_data.get("has_symptoms", False)
)
def get_context_summary(self) -> str:
"""Generate a brief context summary for the AI"""
summary = "\n[Session Context: "
if "name" in self.patient_data:
summary += f"Name: {self.patient_data['name']}, "
if "age" in self.patient_data:
summary += f"Age: {self.patient_data['age']}, "
summary += f"Questions asked: {self.questions_asked}/7, "
if self.questions_asked >= 5:
summary += "β οΈ IMPORTANT: You've asked enough questions. After the next 1-2 answers, IMMEDIATELY provide comprehensive medical recommendations.]"
elif self.questions_asked >= 7:
summary += "β οΈ CRITICAL: You MUST provide comprehensive medical recommendations NOW. Do not ask more questions!]"
else:
summary += f"Ask {7 - self.questions_asked} more essential questions then give recommendations.]"
return summary
def get_gemini_history(self) -> List[Dict]:
"""Convert history to Gemini format"""
gemini_history = []
for msg in self.history:
gemini_history.append({
"role": "user" if msg["role"] == "user" else "model",
"parts": [msg["content"]]
})
return gemini_history
@classmethod
def from_json(cls, session_data: Dict) -> 'ConversationMemory':
"""Create ConversationMemory from JSON data"""
memory = cls(session_id=session_data["session_id"])
memory.history = session_data["history"]
memory.patient_data = session_data["patient_data"]
memory.questions_asked = session_data["questions_asked"]
memory.created_at = datetime.fromisoformat(session_data["created_at"])
memory.pdf_filename = session_data.get("pdf_filename")
return memory
sessions: Dict[str, ConversationMemory] = {}
def cleanup_old_sessions():
"""Remove sessions older than 1 hour from memory"""
current_time = datetime.now()
expired_sessions = []
for session_id, memory in sessions.items():
age = (current_time - memory.created_at).total_seconds()
if age > 3600:
expired_sessions.append(session_id)
for session_id in expired_sessions:
del sessions[session_id]
# =====================================================
# FASTAPI APPLICATION
# =====================================================
app = FastAPI(
title="AI Doctor Consultation API with PDF Generation",
description="Professional medical consultation API with PDF summary generation",
version="3.0.0"
)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Pydantic models
class ChatRequest(BaseModel):
session_id: Optional[str] = None
message: str
class ChatResponse(BaseModel):
session_id: str
response: str
timestamp: str
patient_data: Dict
class SessionRequest(BaseModel):
session_id: str
class SummaryResponse(BaseModel):
summary: str
session_id: str
pdf_filename: str
pdf_url: str
class HealthCheck(BaseModel):
status: str
timestamp: str
active_sessions: int
stored_sessions: int
stored_pdfs: int
# =====================================================
# API ENDPOINTS
# =====================================================
@app.get("/", response_model=HealthCheck)
async def root():
"""Health check endpoint"""
cleanup_old_sessions()
stored_count = len(list(STORAGE_DIR.glob("*.json")))
pdf_count = len(list(PDF_DIR.glob("*.pdf")))
return {
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"active_sessions": len(sessions),
"stored_sessions": stored_count,
"stored_pdfs": pdf_count
}
@app.post("/start-session")
async def start_session():
"""Start a new consultation session"""
session_id = str(uuid.uuid4())
sessions[session_id] = ConversationMemory(max_messages=20, session_id=session_id)
initial_message = "Hello! I'm Dr. AI Assistant. I'm here to help you today.\n\nπ€ May I have your name, please?"
sessions[session_id].add_message("assistant", initial_message)
return {
"session_id": session_id,
"message": initial_message,
"timestamp": datetime.now().isoformat()
}
@app.post("/chat", response_model=ChatResponse)
async def chat(request: ChatRequest):
"""Send a message and get doctor's response"""
try:
if not request.session_id or request.session_id not in sessions:
session_id = str(uuid.uuid4())
sessions[session_id] = ConversationMemory(max_messages=20, session_id=session_id)
else:
session_id = request.session_id
memory = sessions[session_id]
memory.extract_patient_info(request.message)
memory.add_message("user", request.message)
context = memory.get_context_summary()
system_prompt = DOCTOR_SYSTEM_PROMPT + context
model = genai.GenerativeModel(
model_name=MODEL_ID,
system_instruction=system_prompt
)
chat = model.start_chat(history=memory.get_gemini_history()[:-1])
response = chat.send_message(request.message)
doctor_response = response.text
memory.add_message("assistant", doctor_response)
return {
"session_id": session_id,
"response": doctor_response,
"timestamp": datetime.now().isoformat(),
"patient_data": memory.patient_data
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error: {str(e)}")
@app.post("/summary", response_model=SummaryResponse)
async def generate_summary(request: SessionRequest):
"""Generate consultation summary and PDF"""
if request.session_id not in sessions:
session_data = load_session_from_json(request.session_id)
if not session_data:
raise HTTPException(status_code=404, detail="Session not found")
memory = ConversationMemory.from_json(session_data)
sessions[request.session_id] = memory
else:
memory = sessions[request.session_id]
summary_request = """Please generate a COMPREHENSIVE and DETAILED medical consultation summary based on our entire conversation. Make it thorough and professional:
π **COMPREHENSIVE MEDICAL CONSULTATION SUMMARY**
βββββββββββββββββββββββββββββββββββββββββββββ
**PATIENT INFORMATION:**
- Full Name: [Patient's name]
- Age: [Patient's age if mentioned]
- Gender: [If mentioned]
- Consultation Date: [Current date and time]
- Session Duration: [Approximate]
- Current Medications: [List all mentioned]
- Known Allergies: [If mentioned]
**CHIEF COMPLAINTS & SYMPTOMS:**
[Provide a detailed description of ALL symptoms mentioned, including:]
- Primary symptom and severity
- Duration of each symptom
- Onset and progression
- Associated symptoms
- Aggravating and relieving factors
- Impact on daily activities
**DETAILED MEDICAL HISTORY:**
[Include everything discussed:]
- Current medications and dosages
- Past medical conditions
- Recent illnesses or infections
- Family medical history (if mentioned)
- Lifestyle factors (sleep, stress, diet)
- Recent travel or exposures
**CLINICAL ASSESSMENT:**
[Provide detailed analysis:]
- Most likely diagnosis with explanation
- Differential diagnoses (2-3 possibilities)
- Reasoning behind each possibility
- Risk factors present
- Severity assessment
**COMPREHENSIVE TREATMENT PLAN:**
1. **IMMEDIATE CARE RECOMMENDATIONS:**
- What to do in the next 24-48 hours
- Symptom management strategies
- Warning signs to watch for
2. **MEDICATION RECOMMENDATIONS:**
- Primary medications (generic names, dosages, frequency, duration)
- Alternative options if first choice unavailable
- Potential side effects to monitor
- Drug interactions to avoid
- When to take each medication (with/without food)
- Important: Check with pharmacist for exact dosing
3. **DETAILED DIETARY RECOMMENDATIONS:**
- Foods to eat (specific examples and portions)
- Foods to avoid completely
- Meal timing and frequency
- Hydration guidelines (specific amounts)
- Nutritional supplements if needed
- Sample meal plan for recovery
4. **LIFESTYLE MODIFICATIONS:**
- Sleep recommendations (hours, timing, environment)
- Rest and activity balance
- Stress management techniques
- Environmental modifications
- Work/school attendance guidance
- Specific activities to avoid
5. **HOME CARE REMEDIES:**
- Natural remedies that may help
- Temperature management techniques
- Pain relief methods
- Steam inhalation or other therapies
- Specific home treatments for symptoms
6. **EXERCISE & PHYSICAL ACTIVITY:**
- Current activity restrictions
- Safe exercises during recovery
- When to resume normal activities
- Gradual activity progression plan
- Post-recovery exercise recommendations
7. **PREVENTIVE MEASURES:**
- How to prevent recurrence
- Hygiene practices
- Vaccination recommendations
- Family/household precautions
- Long-term health maintenance
8. **MONITORING PLAN:**
- Symptoms to track daily
- How to measure improvement
- When improvement should be expected
- What to document for doctor visit
**CRITICAL WARNING SIGNS - SEEK IMMEDIATE MEDICAL ATTENTION IF:**
[List 5-7 specific warning signs that require emergency care:]
- [Specific symptom with threshold]
- [Specific symptom with threshold]
- [Continue with detailed warnings]
**FOLLOW-UP CARE PLAN:**
- Timeline for self-care (e.g., "Monitor for 48 hours")
- When to schedule doctor appointment (specific timeframe)
- What information to bring to doctor
- Specialist referral recommendations if needed
- Follow-up testing that may be needed
**PROGNOSIS & EXPECTED RECOVERY:**
- Expected recovery timeline
- What to expect during recovery process
- Signs of improvement to look for
- Long-term outlook
**ADDITIONAL RESOURCES:**
- Reputable health information sources
- Support resources if applicable
- Emergency contact information reminder
**PATIENT EDUCATION:**
- Understanding your condition
- How the body fights this illness
- Why specific recommendations are important
- Common misconceptions about this condition
βββββββββββββββββββββββββββββββββββββββββββββ
β οΈ **CRITICAL DISCLAIMER** β οΈ
This is a preliminary AI-generated consultation for informational and educational purposes ONLY.
This is NOT a substitute for professional medical advice, diagnosis, or treatment.
This AI cannot examine you physically, run laboratory tests, or make definitive diagnoses.
ALWAYS seek the advice of a qualified, licensed healthcare provider with any questions regarding a medical condition.
Never disregard professional medical advice or delay seeking it because of this AI consultation.
In case of emergency, call your local emergency services immediately.
βββββββββββββββββββββββββββββββββββββββββββββ
Please make this summary as detailed, professional, and helpful as possible. Include specific, actionable advice."""
try:
model = genai.GenerativeModel(
model_name=MODEL_ID,
system_instruction=DOCTOR_SYSTEM_PROMPT
)
chat = model.start_chat(history=memory.get_gemini_history())
response = chat.send_message(summary_request)
summary_text = response.text
# Generate PDF
pdf_filename = generate_pdf_summary(
request.session_id,
summary_text,
memory.patient_data,
memory.history
)
# Save PDF filename to memory
memory.pdf_filename = pdf_filename
save_session_to_json(request.session_id, memory)
return {
"summary": summary_text,
"session_id": request.session_id,
"pdf_filename": pdf_filename,
"pdf_url": f"/download-pdf/{request.session_id}"
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error generating summary: {str(e)}")
@app.get("/download-pdf/{session_id}")
async def download_pdf(session_id: str):
"""Download PDF summary for a session"""
# Check if session exists
if session_id in sessions:
memory = sessions[session_id]
else:
session_data = load_session_from_json(session_id)
if not session_data:
raise HTTPException(status_code=404, detail="Session not found")
memory = ConversationMemory.from_json(session_data)
if not memory.pdf_filename:
raise HTTPException(status_code=404, detail="PDF not generated yet. Please generate summary first.")
pdf_path = PDF_DIR / memory.pdf_filename
if not pdf_path.exists():
raise HTTPException(status_code=404, detail="PDF file not found")
patient_name = memory.patient_data.get('name', 'Patient')
download_filename = f"Consultation_Summary_{patient_name}_{datetime.now().strftime('%Y%m%d')}.pdf"
return FileResponse(
path=str(pdf_path),
media_type='application/pdf',
filename=download_filename
)
@app.get("/load-session/{session_id}")
async def load_session(session_id: str):
"""Load a previous consultation session by ID"""
if session_id in sessions:
memory = sessions[session_id]
return {
"session_id": session_id,
"loaded": True,
"from_cache": True,
"history": memory.history,
"patient_data": memory.patient_data,
"created_at": memory.created_at.isoformat(),
"questions_asked": memory.questions_asked,
"has_pdf": memory.pdf_filename is not None,
"pdf_url": f"/download-pdf/{session_id}" if memory.pdf_filename else None
}
session_data = load_session_from_json(session_id)
if not session_data:
raise HTTPException(status_code=404, detail=f"Session {session_id} not found")
memory = ConversationMemory.from_json(session_data)
sessions[session_id] = memory
return {
"session_id": session_id,
"loaded": True,
"from_cache": False,
"history": memory.history,
"patient_data": memory.patient_data,
"created_at": memory.created_at.isoformat(),
"questions_asked": memory.questions_asked,
"has_pdf": memory.pdf_filename is not None,
"pdf_url": f"/download-pdf/{session_id}" if memory.pdf_filename else None,
"message": "Session loaded successfully. You can continue the conversation."
}
@app.get("/all-sessions")
async def get_all_sessions():
"""Get list of all stored consultation sessions"""
return {
"total_sessions": len(list(STORAGE_DIR.glob("*.json"))),
"sessions": list_all_sessions()
}
@app.post("/restart-session")
async def restart_session(request: SessionRequest):
"""Restart a consultation session"""
if request.session_id in sessions:
del sessions[request.session_id]
sessions[request.session_id] = ConversationMemory(max_messages=20, session_id=request.session_id)
initial_message = "Consultation restarted. Hello! I'm Dr. AI Assistant. May I have your name please?"
sessions[request.session_id].add_message("assistant", initial_message)
return {
"session_id": request.session_id,
"message": initial_message,
"timestamp": datetime.now().isoformat()
}
@app.delete("/session/{session_id}")
async def delete_session(session_id: str):
"""Delete a consultation session (from memory, JSON, and PDF)"""
if session_id in sessions:
memory = sessions[session_id]
pdf_filename = memory.pdf_filename
del sessions[session_id]
else:
session_data = load_session_from_json(session_id)
pdf_filename = session_data.get('pdf_filename') if session_data else None
# Remove JSON file
file_path = STORAGE_DIR / f"{session_id}.json"
if file_path.exists():
file_path.unlink()
# Remove PDF file if exists
if pdf_filename:
pdf_path = PDF_DIR / pdf_filename
if pdf_path.exists():
pdf_path.unlink()
return {"message": "Session and associated files deleted successfully"}
@app.get("/session/{session_id}/history")
async def get_session_history(session_id: str):
"""Get conversation history for a session"""
if session_id in sessions:
memory = sessions[session_id]
else:
session_data = load_session_from_json(session_id)
if not session_data:
raise HTTPException(status_code=404, detail="Session not found")
memory = ConversationMemory.from_json(session_data)
return {
"session_id": session_id,
"history": memory.history,
"patient_data": memory.patient_data,
"created_at": memory.created_at.isoformat(),
"questions_asked": memory.questions_asked,
"has_pdf": memory.pdf_filename is not None
}
@app.get("/active-sessions")
async def get_active_sessions():
"""Get list of all active sessions in memory"""
cleanup_old_sessions()
return {
"active_sessions": len(sessions),
"sessions": [
{
"session_id": sid,
"created_at": mem.created_at.isoformat(),
"message_count": len(mem.history),
"questions_asked": mem.questions_asked,
"patient_data": mem.patient_data,
"has_pdf": mem.pdf_filename is not None
}
for sid, mem in sessions.items()
]
}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000) |