File size: 6,289 Bytes
dad7343
 
 
 
 
 
 
 
 
 
 
e8f20b2
dad7343
 
9865afa
dad7343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8f20b2
dad7343
 
 
 
 
 
 
 
 
 
 
 
 
e8f20b2
dad7343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127d575
 
 
 
dad7343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8f20b2
dad7343
 
 
 
 
 
 
 
 
 
 
e8f20b2
dad7343
 
 
 
 
 
 
e8f20b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127d575
e8f20b2
 
 
 
 
 
 
 
 
 
 
dad7343
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from fastapi import FastAPI
from pydantic import BaseModel, Field
from dotenv import load_dotenv
import google.generativeai as genai
import os
import re
import gradio as gr
from typing import Dict, Any, Union, List


# ---------------- Initialize ----------------

app = FastAPI(title="LLM Model API + Gradio UI", version="4.0")

GEMINI_API_KEY='AIzaSyC0XU6yLCILZFUVhKoIcqoy2k5qwQmnDsc'
if not GEMINI_API_KEY:
    raise ValueError("❌ GEMINI_API_KEY not found. Please set it in your .env file.")

genai.configure(api_key=GEMINI_API_KEY)
MODEL_ID = "gemini-2.5-flash"


# ---------------- Schema ----------------
class BiomarkerRequest(BaseModel):
    albumin: float = Field(default=3.2)
    creatinine: float = Field(default=1.4)
    glucose: float = Field(default=145)
    crp: float = Field(default=12.0)
    mcv: float = Field(default=88)
    rdw: float = Field(default=15.5)
    alp: float = Field(default=120)
    wbc: float = Field(default=11.8)
    lymphocytes: float = Field(default=20)
    hb: float = Field(default=13.0)
    pv: float = Field(default=2.1)
    age: int = Field(default=52)
    gender: str = Field(default="female")
    height: float = Field(default=165)
    weight: float = Field(default=70)


# ---------------- Utility ----------------
def clean_json(data: Union[Dict, List, str]) -> Union[Dict, List, str]:
    if isinstance(data, str):
        text = re.sub(r"-{3,}", "", data)
        text = re.sub(r"\s+", " ", text)
        text = text.strip(" -\n\t\r")
        return text
    elif isinstance(data, list):
        return [clean_json(i) for i in data if i and clean_json(i)]
    elif isinstance(data, dict):
        return {k.strip(): clean_json(v) for k, v in data.items()}
    return data


# ---------------- Core Gemini Logic ----------------
def generate_report(data: BiomarkerRequest) -> str:
    """Main logic β€” uses Gemini to generate markdown medical report"""
    prompt = """
You are an advanced **Medical Insight Generation AI** trained to analyze **biomarkers and lab results**.

⚠️ IMPORTANT β€” OUTPUT FORMAT INSTRUCTIONS:
Return your report in this strict markdown structure.

------------------------------
### Executive Summary
**Top 3 Health Priorities:**
1. ...
2. ...
3. ...

**Key Strengths:**
- ...
- ...

------------------------------
### System-Specific Analysis
**Cardiovascular System**
Status: Normal. Explanation: ...

**Liver Function**
Status: Elevated ALP. Explanation: ...

------------------------------
### Personalized Action Plan
### Nutrition:** ...
### **Lifestyle:** ...
### **Testing:** ...
### **Medical Consultation:** ...

------------------------------
### Interaction Alerts
- ...
- ...

------------------------------
### Normal Ranges
- Albumin: 3.5–5.0 g/dL
- Creatinine: 0.7–1.3 mg/dL
- Glucose: 70–100 mg/dL
- CRP: 0–10 mg/L
- MCV: 80–100 fL
- RDW: 11.5–14.5 %
- ALP: 44–147 U/L
- WBC: 4.0–10.0 Γ—10^3/ΞΌL
- Lymphocytes: 20–40 %
- Hemoglobin: 13–17 g/dL
- PV: 2500–3000 mL

------------------------------
### Tabular Mapping
| Biomarker | Value | Status | Insight | Reference Range |
| Albumin | X | Normal | ... | 3.5–5.0 g/dL |
| Creatinine | X | High | ... | 0.7–1.3 mg/dL |
| Glucose | X | ... | ... | 70–100 mg/dL |
------------------------------
"""

    user_message = f"""
Patient Info:
- Age: {data.age}
- Gender: {data.gender}
- Height: {data.height} cm
- Weight: {data.weight} kg

Biomarkers:
- Albumin: {data.albumin} g/dL
- Creatinine: {data.creatinine} mg/dL
- Glucose: {data.glucose} mg/dL
- CRP: {data.crp} mg/L
- MCV: {data.mcv} fL
- RDW: {data.rdw} %
- ALP: {data.alp} U/L
- WBC: {data.wbc} Γ—10^3/ΞΌL
- Lymphocytes: {data.lymphocytes} %
- Hemoglobin: {data.hb} g/dL
- Plasma Volume (PV): {data.pv} L
"""

    model = genai.GenerativeModel(MODEL_ID)
    response = model.generate_content(f"{prompt}\n\n{user_message}")

    if not response or not getattr(response, "text", None):
        return "⚠️ Gemini returned an empty response."

    return response.text.strip()


# ---------------- Gradio Function ----------------
def gradio_interface(albumin, creatinine, glucose, crp, mcv, rdw, alp, wbc,
                     lymphocytes, hb, pv, age, gender, height, weight):
    req = BiomarkerRequest(
        albumin=albumin, creatinine=creatinine, glucose=glucose, crp=crp,
        mcv=mcv, rdw=rdw, alp=alp, wbc=wbc, lymphocytes=lymphocytes,
        hb=hb, pv=pv, age=int(age), gender=gender, height=height, weight=weight
    )
    return generate_report(req)


# ---------------- Gradio UI (Vertical Layout) ----------------
with gr.Blocks(theme="soft", title="LLM Biomarker Analyzer") as iface:
    gr.Markdown("## 🧬 LLM Biomarker Analyzer")
    gr.Markdown("Enter your biomarker and demographic data below to generate a **Gemini-powered medical insight report**:")

    with gr.Column():
        with gr.Row():
            age = gr.Number(label="Age (years)", value=52)
            gender = gr.Radio(["male", "female"], label="Gender", value="female")

        with gr.Row():
            height = gr.Number(label="Height (cm)", value=165)
            weight = gr.Number(label="Weight (kg)", value=70)

        gr.Markdown("### πŸ”¬ Biomarker Values")

        grid_inputs = [
            gr.Number(label="Albumin (g/dL)", value=3.2),
            gr.Number(label="Creatinine (mg/dL)", value=1.4),
            gr.Number(label="Glucose (mg/dL)", value=145),
            gr.Number(label="CRP (mg/L)", value=12.0),
            gr.Number(label="MCV (fL)", value=88),
            gr.Number(label="RDW (%)", value=15.5),
            gr.Number(label="ALP (U/L)", value=120),
            gr.Number(label="WBC (Γ—10Β³/ΞΌL)", value=11.8),
            gr.Number(label="Lymphocytes (%)", value=20),
            gr.Number(label="Hemoglobin (g/dL)", value=13.0),
            gr.Number(label="Plasma Volume (mL)", value=2100)
        ]

        submit_btn = gr.Button("🧠 Generate Medical Report", variant="primary")

    output_md = gr.Markdown(label="AI-Generated Medical Report")

    submit_btn.click(
        fn=gradio_interface,
        inputs=grid_inputs + [age, gender, height, weight],
        outputs=output_md
    )

# ---------------- Launch ----------------
if __name__ == "__main__":
    iface.launch(server_name="0.0.0.0", server_port=7860)