Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoImageProcessor, ConvNextV2ForImageClassification | |
| from transformers import AutoModelForImageClassification | |
| from torch import nn | |
| import dbimutils as utils | |
| DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| image_processor = AutoImageProcessor.from_pretrained("Muinez/artwork-scorer") | |
| model = AutoModelForImageClassification.from_pretrained("Muinez/artwork-scorer", problem_type="multi_label_classification").to(DEVICE) | |
| def predict(img): | |
| file = utils.preprocess_image(img) | |
| encoded = image_processor(file, return_tensors="pt").to(DEVICE) | |
| with torch.no_grad(): | |
| logits = model(**encoded).logits.cpu() | |
| outputs = nn.functional.sigmoid(logits) | |
| return outputs[0][0].item(), outputs[0][1].item(), outputs[0][2].item() | |
| gr.Interface( | |
| title="Artwork scorer", | |
| description="Predicts score (0-1) for artwork.\nCould be wrong!!!\nDoes not work very well with nsfw i.e. it was not trained on it", | |
| fn=predict, | |
| allow_flagging="never", | |
| inputs=gr.Image(type="pil"), | |
| outputs=[gr.Number(label="Score"), gr.Number(label="View count ratio (probably useless)"), gr.Number(label="Upload date 0 - 2016, 1 - 2023")] | |
| ).launch() |