Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from gradio_rich_textbox import RichTextbox | |
| from PIL import Image | |
| from surya.ocr import run_ocr | |
| from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor | |
| from surya.model.recognition.model import load_model as load_rec_model | |
| from surya.model.recognition.processor import load_processor as load_rec_processor | |
| from lang_list import TEXT_SOURCE_LANGUAGE_NAMES , LANGUAGE_NAME_TO_CODE , text_source_language_codes | |
| from gradio_client import Client | |
| from dotenv import load_dotenv | |
| import requests | |
| from io import BytesIO | |
| import cohere | |
| import os | |
| import re | |
| import pandas as pd | |
| import pydub | |
| from pydub import AudioSegment | |
| from pydub.utils import make_chunks | |
| from pathlib import Path | |
| import hashlib | |
| title = "# Welcome to AyaTonic" | |
| description = "Learn a New Language With Aya" | |
| # Load environment variables | |
| load_dotenv() | |
| COHERE_API_KEY = os.getenv('CO_API_KEY') | |
| SEAMLESSM4T = os.getenv('SEAMLESSM4T') | |
| df = pd.read_csv("lang_list.csv") | |
| choices = df["name"].to_list() | |
| inputlanguage = "" | |
| producetext = "\n\nProduce a complete expositional blog post in {target_language} based on the above :" | |
| formatinputstring = """\n\nthe above text is a learning aid. you must use rich text format to rewrite the above and add 1 . a red color tags for nouns 2. a blue color tag for verbs 3. a green color tag for adjectives and adverbs: Example: <span style="color: red;">(.?)</span>. Don't change other format of span tag other than color and the (.?). """ | |
| translatetextinst = "\n\nthe above text is a learning aid. you must use markdown format to translate the above into {inputlanguage} :'" | |
| patterns = { | |
| "red": r'<span style="color: red;">(.*?)</span>', | |
| "blue": r'<span style="color: blue;">(.*?)</span>', | |
| "green": r'<span style="color: green;">(.*?)</span>', | |
| } | |
| # Dictionaries to hold the matches | |
| matches = { | |
| "red": [], | |
| "blue": [], | |
| "green": [], | |
| } | |
| co = cohere.Client(COHERE_API_KEY) | |
| audio_client = Client(SEAMLESSM4T) | |
| def get_language_code(language_name): | |
| """ | |
| Extracts the first two letters of the language code based on the language name. | |
| """ | |
| try: | |
| code = df.loc[df['name'].str.lower() == language_name.lower(), 'code'].values[0] | |
| return code | |
| except IndexError: | |
| print(f"Language name '{language_name}' not found.") | |
| return None | |
| def translate_text(text, inputlanguage, target_language): | |
| """ | |
| Translates text. | |
| """ | |
| # Ensure you format the instruction string within the function body | |
| instructions = translatetextinst.format(inputlanguage=inputlanguage) | |
| producetext_formatted = producetext.format(target_language=target_language) | |
| prompt = f"{text}{producetext_formatted}\n{instructions}" | |
| response = co.generate( | |
| model='c4ai-aya', | |
| prompt=prompt, | |
| max_tokens=2986, | |
| temperature=0.6, | |
| k=0, | |
| stop_sequences=[], | |
| return_likelihoods='NONE' | |
| ) | |
| return response.generations[0].text | |
| class LongAudioProcessor: | |
| def __init__(self, audio_client, api_key=None): | |
| self.client = audio_client | |
| self.process_audio_to_text = process_audio_to_text | |
| self.api_key = api_key | |
| def process_long_audio(self, audio_path, inputlanguage, outputlanguage, chunk_length_ms=20000): | |
| """ | |
| Process audio files longer than 29 seconds by chunking them into smaller segments. | |
| """ | |
| audio = AudioSegment.from_file(audio_path) | |
| chunks = make_chunks(audio, chunk_length_ms) | |
| full_text = "" | |
| for i, chunk in enumerate(chunks): | |
| chunk_name = f"chunk{i}.wav" | |
| with open(chunk_name, 'wb') as file: | |
| chunk.export(file, format="wav") | |
| try: | |
| result = self.process_audio_to_text(chunk_name, inputlanguage=inputlanguage, outputlanguage=outputlanguage) | |
| full_text += " " + result.strip() | |
| except Exception as e: | |
| print(f"Error processing {chunk_name}: {e}") | |
| finally: | |
| if os.path.exists(chunk_name): | |
| os.remove(chunk_name) | |
| return full_text.strip() | |
| class TaggedPhraseExtractor: | |
| def __init__(self, text=''): | |
| self.text = text | |
| self.patterns = patterns | |
| def set_text(self, text): | |
| """Set the text to search within.""" | |
| self.text = text | |
| def add_pattern(self, color, pattern): | |
| """Add a new color and its associated pattern.""" | |
| self.patterns[color] = pattern | |
| def extract_phrases(self): | |
| """Extract phrases for all colors and patterns added, including the three longest phrases.""" | |
| matches = {} | |
| for color, pattern in self.patterns.items(): | |
| found_phrases = re.findall(pattern, self.text) | |
| sorted_phrases = sorted(found_phrases, key=len, reverse=True) | |
| matches[color] = sorted_phrases[:3] | |
| return matches | |
| def print_phrases(self): | |
| """Extract phrases and print them, including the three longest phrases.""" | |
| matches = self.extract_phrases() | |
| for color, data in matches.items(): | |
| print(f"Phrases with color {color}:") | |
| for phrase in data['all_phrases']: | |
| print(f"- {phrase}") | |
| print(f"\nThree longest phrases for color {color}:") | |
| for phrase in data['top_three_longest']: | |
| print(f"- {phrase}") | |
| print() | |
| def process_audio_to_text(audio_path, inputlanguage="English", outputlanguage="English"): | |
| """ | |
| Convert audio input to text using the Gradio client. | |
| """ | |
| audio_client = Client(SEAMLESSM4T) | |
| result = audio_client.predict( | |
| audio_path, | |
| inputlanguage, | |
| outputlanguage, | |
| api_name="/s2tt" | |
| ) | |
| print("Audio Result: ", result) | |
| return result[0] | |
| def process_text_to_audio(text, translatefrom="English", translateto="English"): | |
| """ | |
| Convert text input to audio using the Gradio client and return a URL to the generated audio. | |
| """ | |
| try: | |
| # Assuming audio_client.predict is correctly set up and returns a tuple (local_file_path, translated_text) | |
| result = audio_client.predict( | |
| text, | |
| translatefrom, | |
| translateto, | |
| api_name="/t2st" | |
| ) | |
| if not isinstance(result, tuple) or len(result) < 2: | |
| raise ValueError("Unexpected result format from audio_client.predict") | |
| # Print or log the raw API response for inspection | |
| print("Raw API Response:", result) | |
| # Initialize variables | |
| audio_file_path = "" | |
| # Process the result | |
| if result: | |
| for item in result: | |
| if isinstance(item, str): | |
| # Check if the item is a URL pointing to an audio file or a base64 encoded string | |
| if any(ext in item.lower() for ext in ['.mp3', '.wav', '.ogg']) or is_base64(item): | |
| audio_file_path = item | |
| break | |
| if not audio_file_path: | |
| raise ValueError("No audio file path found in the response") | |
| # If the response is a direct file path or a base64 string, handle accordingly | |
| # For simplicity, we're returning the URL or base64 string directly | |
| return audio_file_path | |
| except Exception as e: | |
| print(f"Error processing text to audio: {e}") | |
| return "" | |
| def save_audio_data_to_file(audio_data, directory="audio_files", filename="output_audio.wav"): | |
| """ | |
| Save audio data to a file and return the file path. | |
| """ | |
| os.makedirs(directory, exist_ok=True) | |
| file_path = os.path.join(directory, filename) | |
| with open(file_path, 'wb') as file: | |
| file.write(audio_data) | |
| return file_path | |
| # Ensure the function that reads the audio file checks if the path is a file | |
| def read_audio_file(file_path): | |
| """ | |
| Read and return the audio file content if the path is a file. | |
| """ | |
| if os.path.isfile(file_path): | |
| with open(file_path, 'rb') as file: | |
| return file.read() | |
| else: | |
| raise ValueError(f"Expected a file path, got a directory: {file_path}") | |
| def initialize_ocr_models(): | |
| """ | |
| Load the detection and recognition models along with their processors. | |
| """ | |
| det_processor, det_model = load_det_processor(), load_det_model() | |
| rec_model, rec_processor = load_rec_model(), load_rec_processor() | |
| return det_processor, det_model, rec_model, rec_processor | |
| class OCRProcessor: | |
| def __init__(self, lang_code=["en"]): | |
| self.lang_code = lang_code | |
| self.det_processor, self.det_model, self.rec_model, self.rec_processor = initialize_ocr_models() | |
| def process_image(self, image): | |
| """ | |
| Process a PIL image and return the OCR text. | |
| """ | |
| predictions = run_ocr([image], [self.lang_code], self.det_model, self.det_processor, self.rec_model, self.rec_processor) | |
| return predictions[0] | |
| def process_pdf(self, pdf_path): | |
| """ | |
| Process a PDF file and return the OCR text. | |
| """ | |
| predictions = run_ocr([pdf_path], [self.lang_code], self.det_model, self.det_processor, self.rec_model, self.rec_processor) | |
| return predictions[0] | |
| def process_input(image=None, file=None, audio=None, text="", translateto = "English", translatefrom = "English" ): | |
| lang_code = get_language_code(translatefrom) | |
| ocr_processor = OCRProcessor(lang_code) | |
| final_text = text | |
| print("Image :", image) | |
| if image is not None: | |
| ocr_prediction = ocr_processor.process_image(image) | |
| for idx in range(len((list(ocr_prediction)[0][1]))): | |
| final_text += " " | |
| final_text += list((list(ocr_prediction)[0][1])[idx])[1][1] | |
| if file is not None: | |
| if file.name.lower().endswith(('.png', '.jpg', '.jpeg')): | |
| pil_image = Image.open(file) | |
| ocr_prediction = ocr_processor.process_image(pil_image) | |
| for idx in range(len((list(ocr_prediction)[0][1]))): | |
| final_text += " " | |
| final_text += list((list(ocr_prediction)[0][1])[idx])[1][1] | |
| elif file.name.lower().endswith('.pdf'): | |
| ocr_prediction = ocr_processor.process_pdf(file.name) | |
| for idx in range(len((list(ocr_prediction)[0][1]))): | |
| final_text += " " | |
| final_text += list((list(ocr_prediction)[0][1])[idx])[1][1] | |
| else: | |
| final_text += "\nUnsupported file type." | |
| print("OCR Text: ", final_text) | |
| if audio is not None: | |
| long_audio_processor = LongAudioProcessor(audio_client) | |
| audio_text = long_audio_processor.process_long_audio(audio, inputlanguage=translatefrom, outputlanguage=translateto) | |
| final_text += "\n" + audio_text | |
| final_text_with_producetext = final_text + producetext.format(target_language=translateto) | |
| response = co.generate( | |
| model='c4ai-aya', | |
| prompt=final_text_with_producetext, | |
| max_tokens=1024, | |
| temperature=0.5 | |
| ) | |
| # add graceful handling for errors (overflow) | |
| generated_text = response.generations[0].text | |
| print("Generated Text: ", generated_text) | |
| generated_text_with_format = generated_text + "\n" + formatinputstring | |
| response = co.generate( | |
| model='command-nightly', | |
| prompt=generated_text_with_format, | |
| max_tokens=4000, | |
| temperature=0.5 | |
| ) | |
| processed_text = response.generations[0].text | |
| audio_output = process_text_to_audio(processed_text, translateto, translateto) | |
| extractor = TaggedPhraseExtractor(final_text) | |
| matches = extractor.extract_phrases() | |
| top_phrases = [] | |
| for color, phrases in matches.items(): | |
| top_phrases.extend(phrases) | |
| while len(top_phrases) < 3: | |
| top_phrases.append("") | |
| audio_outputs = [] | |
| translations = [] | |
| for phrase in top_phrases: | |
| if phrase: | |
| translated_phrase = translate_text(phrase, translatefrom=translatefrom, translateto=translateto) | |
| translations.append(translated_phrase) | |
| target_audio = process_text_to_audio(phrase, translatefrom=translateto, translateto=translateto) | |
| native_audio = process_text_to_audio(translated_phrase, translatefrom=translatefrom, translateto=translatefrom) | |
| audio_outputs.append((target_audio, native_audio)) | |
| else: | |
| translations.append("") | |
| audio_outputs.append(("", "")) | |
| return final_text, audio_output, top_phrases, translations, audio_outputs | |
| inputs = [ | |
| gr.Dropdown(choices=choices, label="Your Native Language"), | |
| gr.Dropdown(choices=choices, label="Language To Learn"), | |
| gr.Audio(sources="microphone", type="filepath", label="Mic Input"), | |
| gr.Image(type="pil", label="Camera Input"), | |
| gr.Textbox(lines=2, label="Text Input"), | |
| gr.File(label="File Upload") | |
| ] | |
| outputs = [ | |
| RichTextbox(label="Processed Text"), | |
| gr.Audio(label="Audio"), | |
| gr.Textbox(label="Focus 1"), | |
| gr.Textbox(label="Translated Phrases 1"), | |
| gr.Audio(label="Audio Output (Native Language) 1"), | |
| gr.Audio(label="Audio Output (Target Language) 1"), | |
| gr.Textbox(label="Focus 2"), | |
| gr.Textbox(label="Translated Phrases 2"), | |
| gr.Audio(label="Audio Output (Native Language) 2"), | |
| gr.Audio(label="Audio Output (Target Language) 2"), | |
| gr.Textbox(label="Focus 3"), | |
| gr.Textbox(label="Translated Phrases 3"), | |
| gr.Audio(label="Audio Output (Native Language) 3"), | |
| gr.Audio(label="Audio Output (Target Language) 3") | |
| ] | |
| def update_outputs(inputlanguage, target_language, audio, image, text, file): | |
| processed_text, audio_output_path, top_phrases, translations, audio_outputs = process_input( | |
| image=image, file=file, audio=audio, text=text, | |
| translateto=target_language, translatefrom=inputlanguage | |
| ) | |
| output_tuple = ( | |
| processed_text, # RichTextbox content | |
| audio_output_path, # Main audio output | |
| top_phrases[0] if len(top_phrases) > 0 else "", # Focus 1 | |
| translations[0] if len(translations) > 0 else "", # Translated Phrases 1 | |
| audio_outputs[0][0] if len(audio_outputs) > 0 else "", # Audio Output (Native Language) 1 | |
| audio_outputs[0][1] if len(audio_outputs) > 0 else "", # Audio Output (Target Language) 1 | |
| top_phrases[1] if len(top_phrases) > 1 else "", # Focus 2 | |
| translations[1] if len(translations) > 1 else "", # Translated Phrases 2 | |
| audio_outputs[1][0] if len(audio_outputs) > 1 else "", # Audio Output (Native Language) 2 | |
| audio_outputs[1][1] if len(audio_outputs) > 1 else "", # Audio Output (Target Language) 2 | |
| top_phrases[2] if len(top_phrases) > 2 else "", # Focus 3 | |
| translations[2] if len(translations) > 2 else "", # Translated Phrases 3 | |
| audio_outputs[2][0] if len(audio_outputs) > 2 else "", # Audio Output (Native Language) 3 | |
| audio_outputs[2][1] if len(audio_outputs) > 2 else "" # Audio Output (Target Language) 3 | |
| ) | |
| return output_tuple | |
| def interface_func(inputlanguage, target_language, audio, image, text, file): | |
| return update_outputs(inputlanguage, target_language, audio, image, text, file) | |
| iface = gr.Interface(fn=interface_func, inputs=inputs, outputs=outputs, title=title, description=description) | |
| if __name__ == "__main__": | |
| iface.launch() |