Spaces:
Runtime error
Runtime error
tonic
commited on
Commit
·
be7cfd1
1
Parent(s):
6a99d7a
bug fixes
Browse files
app.py
CHANGED
|
@@ -58,7 +58,7 @@ def get_language_code(language_name):
|
|
| 58 |
print(f"Language name '{language_name}' not found.")
|
| 59 |
return None
|
| 60 |
|
| 61 |
-
def translate_text(text, instructions=translatetextinst):
|
| 62 |
"""
|
| 63 |
translates text.
|
| 64 |
"""
|
|
@@ -77,9 +77,10 @@ def translate_text(text, instructions=translatetextinst):
|
|
| 77 |
class LongAudioProcessor:
|
| 78 |
def __init__(self, audio_client, api_key=None):
|
| 79 |
self.client = audio_client
|
|
|
|
| 80 |
self.api_key = api_key
|
| 81 |
|
| 82 |
-
def process_long_audio(self, audio_path, chunk_length_ms=20000):
|
| 83 |
"""
|
| 84 |
Process audio files longer than 29 seconds by chunking them into smaller segments.
|
| 85 |
"""
|
|
@@ -91,7 +92,7 @@ class LongAudioProcessor:
|
|
| 91 |
with open(chunk_name, 'wb') as file:
|
| 92 |
chunk.export(file, format="wav")
|
| 93 |
try:
|
| 94 |
-
result = self.process_audio_to_text(chunk_name)
|
| 95 |
full_text += " " + result.strip()
|
| 96 |
except Exception as e:
|
| 97 |
print(f"Error processing {chunk_name}: {e}")
|
|
@@ -161,11 +162,18 @@ def process_text_to_audio(text, translatefrom="English", translateto="English"):
|
|
| 161 |
)
|
| 162 |
return result[0]
|
| 163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
class OCRProcessor:
|
| 165 |
def __init__(self, lang_code=["en"]):
|
| 166 |
self.lang_code = lang_code
|
| 167 |
-
self.det_processor, self.det_model =
|
| 168 |
-
self.rec_model, self.rec_processor = load_rec_model(), load_rec_processor()
|
| 169 |
|
| 170 |
def process_image(self, image):
|
| 171 |
"""
|
|
@@ -215,14 +223,14 @@ def process_input(image=None, file=None, audio=None, text="", translateto = "Eng
|
|
| 215 |
|
| 216 |
response = co.generate(
|
| 217 |
model='c4ai-aya',
|
| 218 |
-
prompt=final_text_with_producetext,
|
| 219 |
max_tokens=1024,
|
| 220 |
temperature=0.5
|
| 221 |
)
|
| 222 |
# add graceful handling for errors (overflow)
|
| 223 |
generated_text = response.generations[0].text
|
| 224 |
print("Generated Text: ", generated_text)
|
| 225 |
-
generated_text_with_format = generated_text + "\n" + formatinputstring
|
| 226 |
response = co.generate(
|
| 227 |
model='command-nightly',
|
| 228 |
prompt=generated_text_with_format,
|
|
@@ -283,9 +291,8 @@ outputs = [
|
|
| 283 |
def update_outputs(inputlanguage, target_language, audio, image, text, file):
|
| 284 |
final_text, top_phrases, translations, audio_outputs = process_input(
|
| 285 |
image=image, file=file, audio=audio, text=text,
|
| 286 |
-
translatefrom=inputlanguage
|
| 287 |
)
|
| 288 |
-
|
| 289 |
processed_text_output = final_text
|
| 290 |
audio_output_native_phrases = [native for _, native in audio_outputs]
|
| 291 |
audio_output_target_phrases = [target for target, _ in audio_outputs]
|
|
|
|
| 58 |
print(f"Language name '{language_name}' not found.")
|
| 59 |
return None
|
| 60 |
|
| 61 |
+
def translate_text(text, instructions=translatetextinst.format(input_language=inputlanguage)):
|
| 62 |
"""
|
| 63 |
translates text.
|
| 64 |
"""
|
|
|
|
| 77 |
class LongAudioProcessor:
|
| 78 |
def __init__(self, audio_client, api_key=None):
|
| 79 |
self.client = audio_client
|
| 80 |
+
self.process_audio_to_text = process_audio_to_text
|
| 81 |
self.api_key = api_key
|
| 82 |
|
| 83 |
+
def process_long_audio(self, audio_path, inputlanguage, outputlanguage, chunk_length_ms=20000):
|
| 84 |
"""
|
| 85 |
Process audio files longer than 29 seconds by chunking them into smaller segments.
|
| 86 |
"""
|
|
|
|
| 92 |
with open(chunk_name, 'wb') as file:
|
| 93 |
chunk.export(file, format="wav")
|
| 94 |
try:
|
| 95 |
+
result = self.process_audio_to_text(chunk_name, inputlanguage=inputlanguage, outputlanguage=outputlanguage)
|
| 96 |
full_text += " " + result.strip()
|
| 97 |
except Exception as e:
|
| 98 |
print(f"Error processing {chunk_name}: {e}")
|
|
|
|
| 162 |
)
|
| 163 |
return result[0]
|
| 164 |
|
| 165 |
+
def initialize_ocr_models():
|
| 166 |
+
"""
|
| 167 |
+
Load the detection and recognition models along with their processors.
|
| 168 |
+
"""
|
| 169 |
+
det_processor, det_model = load_det_processor(), load_det_model()
|
| 170 |
+
rec_model, rec_processor = load_rec_model(), load_rec_processor()
|
| 171 |
+
return det_processor, det_model, rec_model, rec_processor
|
| 172 |
+
|
| 173 |
class OCRProcessor:
|
| 174 |
def __init__(self, lang_code=["en"]):
|
| 175 |
self.lang_code = lang_code
|
| 176 |
+
self.det_processor, self.det_model, self.rec_model, self.rec_processor = initialize_ocr_models()
|
|
|
|
| 177 |
|
| 178 |
def process_image(self, image):
|
| 179 |
"""
|
|
|
|
| 223 |
|
| 224 |
response = co.generate(
|
| 225 |
model='c4ai-aya',
|
| 226 |
+
prompt=final_text_with_producetext.format(target_language=target_language),
|
| 227 |
max_tokens=1024,
|
| 228 |
temperature=0.5
|
| 229 |
)
|
| 230 |
# add graceful handling for errors (overflow)
|
| 231 |
generated_text = response.generations[0].text
|
| 232 |
print("Generated Text: ", generated_text)
|
| 233 |
+
generated_text_with_format = generated_text + "\n" + formatinputstring,
|
| 234 |
response = co.generate(
|
| 235 |
model='command-nightly',
|
| 236 |
prompt=generated_text_with_format,
|
|
|
|
| 291 |
def update_outputs(inputlanguage, target_language, audio, image, text, file):
|
| 292 |
final_text, top_phrases, translations, audio_outputs = process_input(
|
| 293 |
image=image, file=file, audio=audio, text=text,
|
| 294 |
+
translateto=target_language, translatefrom=inputlanguage
|
| 295 |
)
|
|
|
|
| 296 |
processed_text_output = final_text
|
| 297 |
audio_output_native_phrases = [native for _, native in audio_outputs]
|
| 298 |
audio_output_target_phrases = [target for target, _ in audio_outputs]
|