| # Copyright 2018 The TensorFlow Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Defines Transformer model parameters.""" | |
| from collections import defaultdict | |
| BASE_PARAMS = defaultdict( | |
| lambda: None, # Set default value to None. | |
| # Input params | |
| default_batch_size=2048, # Maximum number of tokens per batch of examples. | |
| default_batch_size_tpu=32768, | |
| max_length=256, # Maximum number of tokens per example. | |
| # Model params | |
| initializer_gain=1.0, # Used in trainable variable initialization. | |
| vocab_size=33708, # Number of tokens defined in the vocabulary file. | |
| hidden_size=512, # Model dimension in the hidden layers. | |
| num_hidden_layers=6, # Number of layers in the encoder and decoder stacks. | |
| num_heads=8, # Number of heads to use in multi-headed attention. | |
| filter_size=2048, # Inner layer dimension in the feedforward network. | |
| # Dropout values (only used when training) | |
| layer_postprocess_dropout=0.1, | |
| attention_dropout=0.1, | |
| relu_dropout=0.1, | |
| # Training params | |
| label_smoothing=0.1, | |
| learning_rate=2.0, | |
| learning_rate_decay_rate=1.0, | |
| learning_rate_warmup_steps=16000, | |
| # Optimizer params | |
| optimizer_adam_beta1=0.9, | |
| optimizer_adam_beta2=0.997, | |
| optimizer_adam_epsilon=1e-09, | |
| # Default prediction params | |
| extra_decode_length=50, | |
| beam_size=4, | |
| alpha=0.6, # used to calculate length normalization in beam search | |
| # TPU specific parameters | |
| use_tpu=False, | |
| static_batch=False, | |
| allow_ffn_pad=True, | |
| ) | |
| BIG_PARAMS = BASE_PARAMS.copy() | |
| BIG_PARAMS.update( | |
| default_batch_size=4096, | |
| # default batch size is smaller than for BASE_PARAMS due to memory limits. | |
| default_batch_size_tpu=16384, | |
| hidden_size=1024, | |
| filter_size=4096, | |
| num_heads=16, | |
| ) | |
| # Parameters for running the model in multi gpu. These should not change the | |
| # params that modify the model shape (such as the hidden_size or num_heads). | |
| BASE_MULTI_GPU_PARAMS = BASE_PARAMS.copy() | |
| BASE_MULTI_GPU_PARAMS.update( | |
| learning_rate_warmup_steps=8000 | |
| ) | |
| BIG_MULTI_GPU_PARAMS = BIG_PARAMS.copy() | |
| BIG_MULTI_GPU_PARAMS.update( | |
| layer_postprocess_dropout=0.3, | |
| learning_rate_warmup_steps=8000 | |
| ) | |
| # Parameters for testing the model | |
| TINY_PARAMS = BASE_PARAMS.copy() | |
| TINY_PARAMS.update( | |
| default_batch_size=1024, | |
| default_batch_size_tpu=1024, | |
| hidden_size=32, | |
| num_heads=4, | |
| filter_size=256, | |
| ) | |