Spaces:
Runtime error
Runtime error
| # Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Provides data for the ImageNet ILSVRC 2012 Dataset plus some bounding boxes. | |
| Some images have one or more bounding boxes associated with the label of the | |
| image. See details here: http://image-net.org/download-bboxes | |
| WARNING: Don't use for object detection, in this case all the bounding boxes | |
| of the image belong to just one class. | |
| """ | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import os | |
| import tensorflow as tf | |
| slim = tf.contrib.slim | |
| _FILE_PATTERN = '%s-*' | |
| _SPLITS_TO_SIZES = { | |
| 'train': 1281167, | |
| 'validation': 50000, | |
| } | |
| _ITEMS_TO_DESCRIPTIONS = { | |
| 'image': 'A color image of varying height and width.', | |
| 'label': 'The label id of the image, integer between 0 and 999', | |
| 'label_text': 'The text of the label.', | |
| 'object/bbox': 'A list of bounding boxes.', | |
| 'object/label': 'A list of labels, one per each object.', | |
| } | |
| _NUM_CLASSES = 1001 | |
| def get_split(split_name, dataset_dir, file_pattern=None, reader=None): | |
| """Gets a dataset tuple with instructions for reading ImageNet. | |
| Args: | |
| split_name: A train/test split name. | |
| dataset_dir: The base directory of the dataset sources. | |
| file_pattern: The file pattern to use when matching the dataset sources. | |
| It is assumed that the pattern contains a '%s' string so that the split | |
| name can be inserted. | |
| reader: The TensorFlow reader type. | |
| Returns: | |
| A `Dataset` namedtuple. | |
| Raises: | |
| ValueError: if `split_name` is not a valid train/test split. | |
| """ | |
| if split_name not in _SPLITS_TO_SIZES: | |
| raise ValueError('split name %s was not recognized.' % split_name) | |
| if not file_pattern: | |
| file_pattern = _FILE_PATTERN | |
| file_pattern = os.path.join(dataset_dir, file_pattern % split_name) | |
| # Allowing None in the signature so that dataset_factory can use the default. | |
| if reader is None: | |
| reader = tf.TFRecordReader | |
| keys_to_features = { | |
| 'image/encoded': tf.FixedLenFeature( | |
| (), tf.string, default_value=''), | |
| 'image/format': tf.FixedLenFeature( | |
| (), tf.string, default_value='jpeg'), | |
| 'image/class/label': tf.FixedLenFeature( | |
| [], dtype=tf.int64, default_value=-1), | |
| 'image/class/text': tf.FixedLenFeature( | |
| [], dtype=tf.string, default_value=''), | |
| 'image/object/bbox/xmin': tf.VarLenFeature( | |
| dtype=tf.float32), | |
| 'image/object/bbox/ymin': tf.VarLenFeature( | |
| dtype=tf.float32), | |
| 'image/object/bbox/xmax': tf.VarLenFeature( | |
| dtype=tf.float32), | |
| 'image/object/bbox/ymax': tf.VarLenFeature( | |
| dtype=tf.float32), | |
| 'image/object/class/label': tf.VarLenFeature( | |
| dtype=tf.int64), | |
| } | |
| items_to_handlers = { | |
| 'image': slim.tfexample_decoder.Image('image/encoded', 'image/format'), | |
| 'label': slim.tfexample_decoder.Tensor('image/class/label'), | |
| 'label_text': slim.tfexample_decoder.Tensor('image/class/text'), | |
| 'object/bbox': slim.tfexample_decoder.BoundingBox( | |
| ['ymin', 'xmin', 'ymax', 'xmax'], 'image/object/bbox/'), | |
| 'object/label': slim.tfexample_decoder.Tensor('image/object/class/label'), | |
| } | |
| decoder = slim.tfexample_decoder.TFExampleDecoder( | |
| keys_to_features, items_to_handlers) | |
| return slim.dataset.Dataset( | |
| data_sources=file_pattern, | |
| reader=reader, | |
| decoder=decoder, | |
| num_samples=_SPLITS_TO_SIZES[split_name], | |
| items_to_descriptions=_ITEMS_TO_DESCRIPTIONS, | |
| num_classes=_NUM_CLASSES) | |