Spaces:
Runtime error
Runtime error
| # Copyright 2017 Google Inc. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Generates vocabulary and term frequency files for datasets.""" | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| from six import iteritems | |
| from collections import defaultdict | |
| # Dependency imports | |
| import tensorflow as tf | |
| from data import data_utils | |
| from data import document_generators | |
| flags = tf.app.flags | |
| FLAGS = flags.FLAGS | |
| # Flags controlling input are in document_generators.py | |
| flags.DEFINE_string('output_dir', '', | |
| 'Path to save vocab.txt and vocab_freq.txt.') | |
| flags.DEFINE_boolean('use_unlabeled', True, 'Whether to use the ' | |
| 'unlabeled sentiment dataset in the vocabulary.') | |
| flags.DEFINE_boolean('include_validation', False, 'Whether to include the ' | |
| 'validation set in the vocabulary.') | |
| flags.DEFINE_integer('doc_count_threshold', 1, 'The minimum number of ' | |
| 'documents a word or bigram should occur in to keep ' | |
| 'it in the vocabulary.') | |
| MAX_VOCAB_SIZE = 100 * 1000 | |
| def fill_vocab_from_doc(doc, vocab_freqs, doc_counts): | |
| """Fills vocabulary and doc counts with tokens from doc. | |
| Args: | |
| doc: Document to read tokens from. | |
| vocab_freqs: dict<token, frequency count> | |
| doc_counts: dict<token, document count> | |
| Returns: | |
| None | |
| """ | |
| doc_seen = set() | |
| for token in document_generators.tokens(doc): | |
| if doc.add_tokens or token in vocab_freqs: | |
| vocab_freqs[token] += 1 | |
| if token not in doc_seen: | |
| doc_counts[token] += 1 | |
| doc_seen.add(token) | |
| def main(_): | |
| tf.logging.set_verbosity(tf.logging.INFO) | |
| vocab_freqs = defaultdict(int) | |
| doc_counts = defaultdict(int) | |
| # Fill vocabulary frequencies map and document counts map | |
| for doc in document_generators.documents( | |
| dataset='train', | |
| include_unlabeled=FLAGS.use_unlabeled, | |
| include_validation=FLAGS.include_validation): | |
| fill_vocab_from_doc(doc, vocab_freqs, doc_counts) | |
| # Filter out low-occurring terms | |
| vocab_freqs = dict((term, freq) for term, freq in iteritems(vocab_freqs) | |
| if doc_counts[term] > FLAGS.doc_count_threshold) | |
| # Sort by frequency | |
| ordered_vocab_freqs = data_utils.sort_vocab_by_frequency(vocab_freqs) | |
| # Limit vocab size | |
| ordered_vocab_freqs = ordered_vocab_freqs[:MAX_VOCAB_SIZE] | |
| # Add EOS token | |
| ordered_vocab_freqs.append((data_utils.EOS_TOKEN, 1)) | |
| # Write | |
| tf.gfile.MakeDirs(FLAGS.output_dir) | |
| data_utils.write_vocab_and_frequency(ordered_vocab_freqs, FLAGS.output_dir) | |
| if __name__ == '__main__': | |
| tf.app.run() | |