Spaces:
Runtime error
Runtime error
| # Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Label map utility functions.""" | |
| import logging | |
| import tensorflow as tf | |
| from google.protobuf import text_format | |
| import string_int_label_map_pb2 | |
| def _validate_label_map(label_map): | |
| """Checks if a label map is valid. | |
| Args: | |
| label_map: StringIntLabelMap to validate. | |
| Raises: | |
| ValueError: if label map is invalid. | |
| """ | |
| for item in label_map.item: | |
| if item.id < 0: | |
| raise ValueError('Label map ids should be >= 0.') | |
| if (item.id == 0 and item.name != 'background' and | |
| item.display_name != 'background'): | |
| raise ValueError('Label map id 0 is reserved for the background label') | |
| def create_category_index(categories): | |
| """Creates dictionary of COCO compatible categories keyed by category id. | |
| Args: | |
| categories: a list of dicts, each of which has the following keys: | |
| 'id': (required) an integer id uniquely identifying this category. | |
| 'name': (required) string representing category name | |
| e.g., 'cat', 'dog', 'pizza'. | |
| Returns: | |
| category_index: a dict containing the same entries as categories, but keyed | |
| by the 'id' field of each category. | |
| """ | |
| category_index = {} | |
| for cat in categories: | |
| category_index[cat['id']] = cat | |
| return category_index | |
| def get_max_label_map_index(label_map): | |
| """Get maximum index in label map. | |
| Args: | |
| label_map: a StringIntLabelMapProto | |
| Returns: | |
| an integer | |
| """ | |
| return max([item.id for item in label_map.item]) | |
| def convert_label_map_to_categories(label_map, | |
| max_num_classes, | |
| use_display_name=True): | |
| """Loads label map proto and returns categories list compatible with eval. | |
| This function loads a label map and returns a list of dicts, each of which | |
| has the following keys: | |
| 'id': (required) an integer id uniquely identifying this category. | |
| 'name': (required) string representing category name | |
| e.g., 'cat', 'dog', 'pizza'. | |
| We only allow class into the list if its id-label_id_offset is | |
| between 0 (inclusive) and max_num_classes (exclusive). | |
| If there are several items mapping to the same id in the label map, | |
| we will only keep the first one in the categories list. | |
| Args: | |
| label_map: a StringIntLabelMapProto or None. If None, a default categories | |
| list is created with max_num_classes categories. | |
| max_num_classes: maximum number of (consecutive) label indices to include. | |
| use_display_name: (boolean) choose whether to load 'display_name' field | |
| as category name. If False or if the display_name field does not exist, | |
| uses 'name' field as category names instead. | |
| Returns: | |
| categories: a list of dictionaries representing all possible categories. | |
| """ | |
| categories = [] | |
| list_of_ids_already_added = [] | |
| if not label_map: | |
| label_id_offset = 1 | |
| for class_id in range(max_num_classes): | |
| categories.append({ | |
| 'id': class_id + label_id_offset, | |
| 'name': 'category_{}'.format(class_id + label_id_offset) | |
| }) | |
| return categories | |
| for item in label_map.item: | |
| if not 0 < item.id <= max_num_classes: | |
| logging.info('Ignore item %d since it falls outside of requested ' | |
| 'label range.', item.id) | |
| continue | |
| if use_display_name and item.HasField('display_name'): | |
| name = item.display_name | |
| else: | |
| name = item.name | |
| if item.id not in list_of_ids_already_added: | |
| list_of_ids_already_added.append(item.id) | |
| categories.append({'id': item.id, 'name': name}) | |
| return categories | |
| def load_labelmap(path): | |
| """Loads label map proto. | |
| Args: | |
| path: path to StringIntLabelMap proto text file. | |
| Returns: | |
| a StringIntLabelMapProto | |
| """ | |
| with tf.gfile.GFile(path, 'r') as fid: | |
| label_map_string = fid.read() | |
| label_map = string_int_label_map_pb2.StringIntLabelMap() | |
| try: | |
| text_format.Merge(label_map_string, label_map) | |
| except text_format.ParseError: | |
| label_map.ParseFromString(label_map_string) | |
| _validate_label_map(label_map) | |
| return label_map | |
| def get_label_map_dict(label_map_path, use_display_name=False): | |
| """Reads a label map and returns a dictionary of label names to id. | |
| Args: | |
| label_map_path: path to label_map. | |
| use_display_name: whether to use the label map items' display names as keys. | |
| Returns: | |
| A dictionary mapping label names to id. | |
| """ | |
| label_map = load_labelmap(label_map_path) | |
| label_map_dict = {} | |
| for item in label_map.item: | |
| if use_display_name: | |
| label_map_dict[item.display_name] = item.id | |
| else: | |
| label_map_dict[item.name] = item.id | |
| return label_map_dict | |
| def create_category_index_from_labelmap(label_map_path): | |
| """Reads a label map and returns a category index. | |
| Args: | |
| label_map_path: Path to `StringIntLabelMap` proto text file. | |
| Returns: | |
| A category index, which is a dictionary that maps integer ids to dicts | |
| containing categories, e.g. | |
| {1: {'id': 1, 'name': 'dog'}, 2: {'id': 2, 'name': 'cat'}, ...} | |
| """ | |
| label_map = load_labelmap(label_map_path) | |
| max_num_classes = max(item.id for item in label_map.item) | |
| categories = convert_label_map_to_categories(label_map, max_num_classes) | |
| return create_category_index(categories) | |
| def create_class_agnostic_category_index(): | |
| """Creates a category index with a single `object` class.""" | |
| return {1: {'id': 1, 'name': 'object'}} | |