Spaces:
Runtime error
Runtime error
| # Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Run training and evaluation for CVT text models.""" | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import tensorflow as tf | |
| from base import configure | |
| from base import utils | |
| from training import trainer | |
| from training import training_progress | |
| FLAGS = tf.app.flags.FLAGS | |
| tf.app.flags.DEFINE_string('mode', 'train', '"train" or "eval') | |
| tf.app.flags.DEFINE_string('model_name', 'default_model', | |
| 'A name identifying the model being ' | |
| 'trained/evaluated') | |
| def main(): | |
| utils.heading('SETUP') | |
| config = configure.Config(mode=FLAGS.mode, model_name=FLAGS.model_name) | |
| config.write() | |
| with tf.Graph().as_default() as graph: | |
| model_trainer = trainer.Trainer(config) | |
| summary_writer = tf.summary.FileWriter(config.summaries_dir) | |
| checkpoints_saver = tf.train.Saver(max_to_keep=1) | |
| best_model_saver = tf.train.Saver(max_to_keep=1) | |
| init_op = tf.global_variables_initializer() | |
| graph.finalize() | |
| with tf.Session() as sess: | |
| sess.run(init_op) | |
| progress = training_progress.TrainingProgress( | |
| config, sess, checkpoints_saver, best_model_saver, | |
| config.mode == 'train') | |
| utils.log() | |
| if config.mode == 'train': | |
| utils.heading('START TRAINING ({:})'.format(config.model_name)) | |
| model_trainer.train(sess, progress, summary_writer) | |
| elif config.mode == 'eval': | |
| utils.heading('RUN EVALUATION ({:})'.format(config.model_name)) | |
| progress.best_model_saver.restore(sess, tf.train.latest_checkpoint( | |
| config.checkpoints_dir)) | |
| model_trainer.evaluate_all_tasks(sess, summary_writer, None) | |
| else: | |
| raise ValueError('Mode must be "train" or "eval"') | |
| if __name__ == '__main__': | |
| main() | |