Spaces:
Runtime error
Runtime error
| # Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Utilities for building the model.""" | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import tensorflow as tf | |
| def project(input_layers, size, name='projection'): | |
| return tf.add_n([tf.layers.dense(layer, size, name=name + '_' + str(i)) | |
| for i, layer in enumerate(input_layers)]) | |
| def lstm_cell(cell_size, keep_prob, num_proj): | |
| return tf.contrib.rnn.DropoutWrapper( | |
| tf.contrib.rnn.LSTMCell(cell_size, num_proj=min(cell_size, num_proj)), | |
| output_keep_prob=keep_prob) | |
| def multi_lstm_cell(cell_sizes, keep_prob, num_proj): | |
| return tf.contrib.rnn.MultiRNNCell([lstm_cell(cell_size, keep_prob, num_proj) | |
| for cell_size in cell_sizes]) | |
| def masked_ce_loss(logits, labels, mask, sparse=False, roll_direction=0): | |
| if roll_direction != 0: | |
| labels = _roll(labels, roll_direction, sparse) | |
| mask *= _roll(mask, roll_direction, True) | |
| ce = ((tf.nn.sparse_softmax_cross_entropy_with_logits if sparse | |
| else tf.nn.softmax_cross_entropy_with_logits_v2) | |
| (logits=logits, labels=labels)) | |
| return tf.reduce_sum(mask * ce) / tf.to_float(tf.reduce_sum(mask)) | |
| def _roll(arr, direction, sparse=False): | |
| if sparse: | |
| return tf.concat([arr[:, direction:], arr[:, :direction]], axis=1) | |
| return tf.concat([arr[:, direction:, :], arr[:, :direction, :]], axis=1) | |