Spaces:
Runtime error
Runtime error
| # Lint as: python2, python3 | |
| # Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Converts ADE20K data to TFRecord file format with Example protos.""" | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import math | |
| import os | |
| import random | |
| import sys | |
| import build_data | |
| from six.moves import range | |
| import tensorflow as tf | |
| FLAGS = tf.app.flags.FLAGS | |
| tf.app.flags.DEFINE_string( | |
| 'train_image_folder', | |
| './ADE20K/ADEChallengeData2016/images/training', | |
| 'Folder containing trainng images') | |
| tf.app.flags.DEFINE_string( | |
| 'train_image_label_folder', | |
| './ADE20K/ADEChallengeData2016/annotations/training', | |
| 'Folder containing annotations for trainng images') | |
| tf.app.flags.DEFINE_string( | |
| 'val_image_folder', | |
| './ADE20K/ADEChallengeData2016/images/validation', | |
| 'Folder containing validation images') | |
| tf.app.flags.DEFINE_string( | |
| 'val_image_label_folder', | |
| './ADE20K/ADEChallengeData2016/annotations/validation', | |
| 'Folder containing annotations for validation') | |
| tf.app.flags.DEFINE_string( | |
| 'output_dir', './ADE20K/tfrecord', | |
| 'Path to save converted tfrecord of Tensorflow example') | |
| _NUM_SHARDS = 4 | |
| def _convert_dataset(dataset_split, dataset_dir, dataset_label_dir): | |
| """Converts the ADE20k dataset into into tfrecord format. | |
| Args: | |
| dataset_split: Dataset split (e.g., train, val). | |
| dataset_dir: Dir in which the dataset locates. | |
| dataset_label_dir: Dir in which the annotations locates. | |
| Raises: | |
| RuntimeError: If loaded image and label have different shape. | |
| """ | |
| img_names = tf.gfile.Glob(os.path.join(dataset_dir, '*.jpg')) | |
| random.shuffle(img_names) | |
| seg_names = [] | |
| for f in img_names: | |
| # get the filename without the extension | |
| basename = os.path.basename(f).split('.')[0] | |
| # cover its corresponding *_seg.png | |
| seg = os.path.join(dataset_label_dir, basename+'.png') | |
| seg_names.append(seg) | |
| num_images = len(img_names) | |
| num_per_shard = int(math.ceil(num_images / _NUM_SHARDS)) | |
| image_reader = build_data.ImageReader('jpeg', channels=3) | |
| label_reader = build_data.ImageReader('png', channels=1) | |
| for shard_id in range(_NUM_SHARDS): | |
| output_filename = os.path.join( | |
| FLAGS.output_dir, | |
| '%s-%05d-of-%05d.tfrecord' % (dataset_split, shard_id, _NUM_SHARDS)) | |
| with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: | |
| start_idx = shard_id * num_per_shard | |
| end_idx = min((shard_id + 1) * num_per_shard, num_images) | |
| for i in range(start_idx, end_idx): | |
| sys.stdout.write('\r>> Converting image %d/%d shard %d' % ( | |
| i + 1, num_images, shard_id)) | |
| sys.stdout.flush() | |
| # Read the image. | |
| image_filename = img_names[i] | |
| image_data = tf.gfile.FastGFile(image_filename, 'rb').read() | |
| height, width = image_reader.read_image_dims(image_data) | |
| # Read the semantic segmentation annotation. | |
| seg_filename = seg_names[i] | |
| seg_data = tf.gfile.FastGFile(seg_filename, 'rb').read() | |
| seg_height, seg_width = label_reader.read_image_dims(seg_data) | |
| if height != seg_height or width != seg_width: | |
| raise RuntimeError('Shape mismatched between image and label.') | |
| # Convert to tf example. | |
| example = build_data.image_seg_to_tfexample( | |
| image_data, img_names[i], height, width, seg_data) | |
| tfrecord_writer.write(example.SerializeToString()) | |
| sys.stdout.write('\n') | |
| sys.stdout.flush() | |
| def main(unused_argv): | |
| tf.gfile.MakeDirs(FLAGS.output_dir) | |
| _convert_dataset( | |
| 'train', FLAGS.train_image_folder, FLAGS.train_image_label_folder) | |
| _convert_dataset('val', FLAGS.val_image_folder, FLAGS.val_image_label_folder) | |
| if __name__ == '__main__': | |
| tf.app.run() | |