Spaces:
Runtime error
Runtime error
| # Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Contains common utility functions and classes for building dataset. | |
| This script contains utility functions and classes to converts dataset to | |
| TFRecord file format with Example protos. | |
| The Example proto contains the following fields: | |
| image/encoded: encoded image content. | |
| image/filename: image filename. | |
| image/format: image file format. | |
| image/height: image height. | |
| image/width: image width. | |
| image/channels: image channels. | |
| image/segmentation/class/encoded: encoded semantic segmentation content. | |
| image/segmentation/class/format: semantic segmentation file format. | |
| """ | |
| import collections | |
| import six | |
| import tensorflow as tf | |
| FLAGS = tf.app.flags.FLAGS | |
| tf.app.flags.DEFINE_enum('image_format', 'png', ['jpg', 'jpeg', 'png'], | |
| 'Image format.') | |
| tf.app.flags.DEFINE_enum('label_format', 'png', ['png'], | |
| 'Segmentation label format.') | |
| # A map from image format to expected data format. | |
| _IMAGE_FORMAT_MAP = { | |
| 'jpg': 'jpeg', | |
| 'jpeg': 'jpeg', | |
| 'png': 'png', | |
| } | |
| class ImageReader(object): | |
| """Helper class that provides TensorFlow image coding utilities.""" | |
| def __init__(self, image_format='jpeg', channels=3): | |
| """Class constructor. | |
| Args: | |
| image_format: Image format. Only 'jpeg', 'jpg', or 'png' are supported. | |
| channels: Image channels. | |
| """ | |
| with tf.Graph().as_default(): | |
| self._decode_data = tf.placeholder(dtype=tf.string) | |
| self._image_format = image_format | |
| self._session = tf.Session() | |
| if self._image_format in ('jpeg', 'jpg'): | |
| self._decode = tf.image.decode_jpeg(self._decode_data, | |
| channels=channels) | |
| elif self._image_format == 'png': | |
| self._decode = tf.image.decode_png(self._decode_data, | |
| channels=channels) | |
| def read_image_dims(self, image_data): | |
| """Reads the image dimensions. | |
| Args: | |
| image_data: string of image data. | |
| Returns: | |
| image_height and image_width. | |
| """ | |
| image = self.decode_image(image_data) | |
| return image.shape[:2] | |
| def decode_image(self, image_data): | |
| """Decodes the image data string. | |
| Args: | |
| image_data: string of image data. | |
| Returns: | |
| Decoded image data. | |
| Raises: | |
| ValueError: Value of image channels not supported. | |
| """ | |
| image = self._session.run(self._decode, | |
| feed_dict={self._decode_data: image_data}) | |
| if len(image.shape) != 3 or image.shape[2] not in (1, 3): | |
| raise ValueError('The image channels not supported.') | |
| return image | |
| def _int64_list_feature(values): | |
| """Returns a TF-Feature of int64_list. | |
| Args: | |
| values: A scalar or list of values. | |
| Returns: | |
| A TF-Feature. | |
| """ | |
| if not isinstance(values, collections.Iterable): | |
| values = [values] | |
| return tf.train.Feature(int64_list=tf.train.Int64List(value=values)) | |
| def _bytes_list_feature(values): | |
| """Returns a TF-Feature of bytes. | |
| Args: | |
| values: A string. | |
| Returns: | |
| A TF-Feature. | |
| """ | |
| def norm2bytes(value): | |
| return value.encode() if isinstance(value, str) and six.PY3 else value | |
| return tf.train.Feature( | |
| bytes_list=tf.train.BytesList(value=[norm2bytes(values)])) | |
| def image_seg_to_tfexample(image_data, filename, height, width, seg_data): | |
| """Converts one image/segmentation pair to tf example. | |
| Args: | |
| image_data: string of image data. | |
| filename: image filename. | |
| height: image height. | |
| width: image width. | |
| seg_data: string of semantic segmentation data. | |
| Returns: | |
| tf example of one image/segmentation pair. | |
| """ | |
| return tf.train.Example(features=tf.train.Features(feature={ | |
| 'image/encoded': _bytes_list_feature(image_data), | |
| 'image/filename': _bytes_list_feature(filename), | |
| 'image/format': _bytes_list_feature( | |
| _IMAGE_FORMAT_MAP[FLAGS.image_format]), | |
| 'image/height': _int64_list_feature(height), | |
| 'image/width': _int64_list_feature(width), | |
| 'image/channels': _int64_list_feature(3), | |
| 'image/segmentation/class/encoded': ( | |
| _bytes_list_feature(seg_data)), | |
| 'image/segmentation/class/format': _bytes_list_feature( | |
| FLAGS.label_format), | |
| })) | |