Spaces:
Runtime error
Runtime error
| # Lint as: python2, python3 | |
| # Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Converts PASCAL VOC 2012 data to TFRecord file format with Example protos. | |
| PASCAL VOC 2012 dataset is expected to have the following directory structure: | |
| + pascal_voc_seg | |
| - build_data.py | |
| - build_voc2012_data.py (current working directory). | |
| + VOCdevkit | |
| + VOC2012 | |
| + JPEGImages | |
| + SegmentationClass | |
| + ImageSets | |
| + Segmentation | |
| + tfrecord | |
| Image folder: | |
| ./VOCdevkit/VOC2012/JPEGImages | |
| Semantic segmentation annotations: | |
| ./VOCdevkit/VOC2012/SegmentationClass | |
| list folder: | |
| ./VOCdevkit/VOC2012/ImageSets/Segmentation | |
| This script converts data into sharded data files and save at tfrecord folder. | |
| The Example proto contains the following fields: | |
| image/encoded: encoded image content. | |
| image/filename: image filename. | |
| image/format: image file format. | |
| image/height: image height. | |
| image/width: image width. | |
| image/channels: image channels. | |
| image/segmentation/class/encoded: encoded semantic segmentation content. | |
| image/segmentation/class/format: semantic segmentation file format. | |
| """ | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import math | |
| import os.path | |
| import sys | |
| import build_data | |
| from six.moves import range | |
| import tensorflow as tf | |
| FLAGS = tf.app.flags.FLAGS | |
| tf.app.flags.DEFINE_string('image_folder', | |
| './VOCdevkit/VOC2012/JPEGImages', | |
| 'Folder containing images.') | |
| tf.app.flags.DEFINE_string( | |
| 'semantic_segmentation_folder', | |
| './VOCdevkit/VOC2012/SegmentationClassRaw', | |
| 'Folder containing semantic segmentation annotations.') | |
| tf.app.flags.DEFINE_string( | |
| 'list_folder', | |
| './VOCdevkit/VOC2012/ImageSets/Segmentation', | |
| 'Folder containing lists for training and validation') | |
| tf.app.flags.DEFINE_string( | |
| 'output_dir', | |
| './tfrecord', | |
| 'Path to save converted SSTable of TensorFlow examples.') | |
| _NUM_SHARDS = 4 | |
| def _convert_dataset(dataset_split): | |
| """Converts the specified dataset split to TFRecord format. | |
| Args: | |
| dataset_split: The dataset split (e.g., train, test). | |
| Raises: | |
| RuntimeError: If loaded image and label have different shape. | |
| """ | |
| dataset = os.path.basename(dataset_split)[:-4] | |
| sys.stdout.write('Processing ' + dataset) | |
| filenames = [x.strip('\n') for x in open(dataset_split, 'r')] | |
| num_images = len(filenames) | |
| num_per_shard = int(math.ceil(num_images / _NUM_SHARDS)) | |
| image_reader = build_data.ImageReader('jpeg', channels=3) | |
| label_reader = build_data.ImageReader('png', channels=1) | |
| for shard_id in range(_NUM_SHARDS): | |
| output_filename = os.path.join( | |
| FLAGS.output_dir, | |
| '%s-%05d-of-%05d.tfrecord' % (dataset, shard_id, _NUM_SHARDS)) | |
| with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: | |
| start_idx = shard_id * num_per_shard | |
| end_idx = min((shard_id + 1) * num_per_shard, num_images) | |
| for i in range(start_idx, end_idx): | |
| sys.stdout.write('\r>> Converting image %d/%d shard %d' % ( | |
| i + 1, len(filenames), shard_id)) | |
| sys.stdout.flush() | |
| # Read the image. | |
| image_filename = os.path.join( | |
| FLAGS.image_folder, filenames[i] + '.' + FLAGS.image_format) | |
| image_data = tf.gfile.GFile(image_filename, 'rb').read() | |
| height, width = image_reader.read_image_dims(image_data) | |
| # Read the semantic segmentation annotation. | |
| seg_filename = os.path.join( | |
| FLAGS.semantic_segmentation_folder, | |
| filenames[i] + '.' + FLAGS.label_format) | |
| seg_data = tf.gfile.GFile(seg_filename, 'rb').read() | |
| seg_height, seg_width = label_reader.read_image_dims(seg_data) | |
| if height != seg_height or width != seg_width: | |
| raise RuntimeError('Shape mismatched between image and label.') | |
| # Convert to tf example. | |
| example = build_data.image_seg_to_tfexample( | |
| image_data, filenames[i], height, width, seg_data) | |
| tfrecord_writer.write(example.SerializeToString()) | |
| sys.stdout.write('\n') | |
| sys.stdout.flush() | |
| def main(unused_argv): | |
| dataset_splits = tf.gfile.Glob(os.path.join(FLAGS.list_folder, '*.txt')) | |
| for dataset_split in dataset_splits: | |
| _convert_dataset(dataset_split) | |
| if __name__ == '__main__': | |
| tf.app.run() | |