Spaces:
Runtime error
Runtime error
| # Lint as: python2, python3 | |
| # Copyright 2019 The TensorFlow Authors All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Tests for eval_coco_format script.""" | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import os | |
| from absl import flags | |
| from absl.testing import absltest | |
| import evaluation as panopticapi_eval | |
| from deeplab.evaluation import eval_coco_format | |
| _TEST_DIR = 'deeplab/evaluation/testdata' | |
| FLAGS = flags.FLAGS | |
| class EvalCocoFormatTest(absltest.TestCase): | |
| def test_compare_pq_with_reference_eval(self): | |
| sample_data_dir = os.path.join(_TEST_DIR) | |
| gt_json_file = os.path.join(sample_data_dir, 'coco_gt.json') | |
| gt_folder = os.path.join(sample_data_dir, 'coco_gt') | |
| pred_json_file = os.path.join(sample_data_dir, 'coco_pred.json') | |
| pred_folder = os.path.join(sample_data_dir, 'coco_pred') | |
| panopticapi_results = panopticapi_eval.pq_compute( | |
| gt_json_file, pred_json_file, gt_folder, pred_folder) | |
| deeplab_results = eval_coco_format.eval_coco_format( | |
| gt_json_file, | |
| pred_json_file, | |
| gt_folder, | |
| pred_folder, | |
| metric='pq', | |
| num_categories=7, | |
| ignored_label=0, | |
| max_instances_per_category=256, | |
| intersection_offset=(256 * 256)) | |
| self.assertCountEqual( | |
| list(deeplab_results.keys()), ['All', 'Things', 'Stuff']) | |
| for cat_group in ['All', 'Things', 'Stuff']: | |
| self.assertCountEqual(deeplab_results[cat_group], ['pq', 'sq', 'rq', 'n']) | |
| for metric in ['pq', 'sq', 'rq', 'n']: | |
| self.assertAlmostEqual(deeplab_results[cat_group][metric], | |
| panopticapi_results[cat_group][metric]) | |
| def test_compare_pc_with_golden_value(self): | |
| sample_data_dir = os.path.join(_TEST_DIR) | |
| gt_json_file = os.path.join(sample_data_dir, 'coco_gt.json') | |
| gt_folder = os.path.join(sample_data_dir, 'coco_gt') | |
| pred_json_file = os.path.join(sample_data_dir, 'coco_pred.json') | |
| pred_folder = os.path.join(sample_data_dir, 'coco_pred') | |
| deeplab_results = eval_coco_format.eval_coco_format( | |
| gt_json_file, | |
| pred_json_file, | |
| gt_folder, | |
| pred_folder, | |
| metric='pc', | |
| num_categories=7, | |
| ignored_label=0, | |
| max_instances_per_category=256, | |
| intersection_offset=(256 * 256), | |
| normalize_by_image_size=False) | |
| self.assertCountEqual( | |
| list(deeplab_results.keys()), ['All', 'Things', 'Stuff']) | |
| for cat_group in ['All', 'Things', 'Stuff']: | |
| self.assertCountEqual(deeplab_results[cat_group], ['pc', 'n']) | |
| self.assertAlmostEqual(deeplab_results['All']['pc'], 0.68210561) | |
| self.assertEqual(deeplab_results['All']['n'], 6) | |
| self.assertAlmostEqual(deeplab_results['Things']['pc'], 0.5890529) | |
| self.assertEqual(deeplab_results['Things']['n'], 4) | |
| self.assertAlmostEqual(deeplab_results['Stuff']['pc'], 0.86821097) | |
| self.assertEqual(deeplab_results['Stuff']['n'], 2) | |
| def test_compare_pc_with_golden_value_normalize_by_size(self): | |
| sample_data_dir = os.path.join(_TEST_DIR) | |
| gt_json_file = os.path.join(sample_data_dir, 'coco_gt.json') | |
| gt_folder = os.path.join(sample_data_dir, 'coco_gt') | |
| pred_json_file = os.path.join(sample_data_dir, 'coco_pred.json') | |
| pred_folder = os.path.join(sample_data_dir, 'coco_pred') | |
| deeplab_results = eval_coco_format.eval_coco_format( | |
| gt_json_file, | |
| pred_json_file, | |
| gt_folder, | |
| pred_folder, | |
| metric='pc', | |
| num_categories=7, | |
| ignored_label=0, | |
| max_instances_per_category=256, | |
| intersection_offset=(256 * 256), | |
| normalize_by_image_size=True) | |
| self.assertCountEqual( | |
| list(deeplab_results.keys()), ['All', 'Things', 'Stuff']) | |
| self.assertAlmostEqual(deeplab_results['All']['pc'], 0.68214908840) | |
| def test_pc_with_multiple_workers(self): | |
| sample_data_dir = os.path.join(_TEST_DIR) | |
| gt_json_file = os.path.join(sample_data_dir, 'coco_gt.json') | |
| gt_folder = os.path.join(sample_data_dir, 'coco_gt') | |
| pred_json_file = os.path.join(sample_data_dir, 'coco_pred.json') | |
| pred_folder = os.path.join(sample_data_dir, 'coco_pred') | |
| deeplab_results = eval_coco_format.eval_coco_format( | |
| gt_json_file, | |
| pred_json_file, | |
| gt_folder, | |
| pred_folder, | |
| metric='pc', | |
| num_categories=7, | |
| ignored_label=0, | |
| max_instances_per_category=256, | |
| intersection_offset=(256 * 256), | |
| num_workers=3, | |
| normalize_by_image_size=False) | |
| self.assertCountEqual( | |
| list(deeplab_results.keys()), ['All', 'Things', 'Stuff']) | |
| self.assertAlmostEqual(deeplab_results['All']['pc'], 0.68210561668) | |
| if __name__ == '__main__': | |
| absltest.main() | |