Spaces:
Runtime error
Runtime error
| # Lint as: python2, python3 | |
| # Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Saves an annotation as one png image. | |
| This script saves an annotation as one png image, and has the option to add | |
| colormap to the png image for better visualization. | |
| """ | |
| import numpy as np | |
| import PIL.Image as img | |
| import tensorflow as tf | |
| from deeplab.utils import get_dataset_colormap | |
| def save_annotation(label, | |
| save_dir, | |
| filename, | |
| add_colormap=True, | |
| normalize_to_unit_values=False, | |
| scale_values=False, | |
| colormap_type=get_dataset_colormap.get_pascal_name()): | |
| """Saves the given label to image on disk. | |
| Args: | |
| label: The numpy array to be saved. The data will be converted | |
| to uint8 and saved as png image. | |
| save_dir: String, the directory to which the results will be saved. | |
| filename: String, the image filename. | |
| add_colormap: Boolean, add color map to the label or not. | |
| normalize_to_unit_values: Boolean, normalize the input values to [0, 1]. | |
| scale_values: Boolean, scale the input values to [0, 255] for visualization. | |
| colormap_type: String, colormap type for visualization. | |
| """ | |
| # Add colormap for visualizing the prediction. | |
| if add_colormap: | |
| colored_label = get_dataset_colormap.label_to_color_image( | |
| label, colormap_type) | |
| else: | |
| colored_label = label | |
| if normalize_to_unit_values: | |
| min_value = np.amin(colored_label) | |
| max_value = np.amax(colored_label) | |
| range_value = max_value - min_value | |
| if range_value != 0: | |
| colored_label = (colored_label - min_value) / range_value | |
| if scale_values: | |
| colored_label = 255. * colored_label | |
| pil_image = img.fromarray(colored_label.astype(dtype=np.uint8)) | |
| with tf.gfile.Open('%s/%s.png' % (save_dir, filename), mode='w') as f: | |
| pil_image.save(f, 'PNG') | |