Spaces:
Runtime error
Runtime error
| # Copyright 2017 Google Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Provides data for the MNIST-M dataset. | |
| The dataset scripts used to create the dataset can be found at: | |
| tensorflow_models/domain_adaptation_/datasets/download_and_convert_mnist_m_dataset.py | |
| """ | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import os | |
| # Dependency imports | |
| import tensorflow as tf | |
| from slim.datasets import dataset_utils | |
| slim = tf.contrib.slim | |
| _FILE_PATTERN = 'mnist_m_%s.tfrecord' | |
| _SPLITS_TO_SIZES = {'train': 58001, 'valid': 1000, 'test': 9001} | |
| _NUM_CLASSES = 10 | |
| _ITEMS_TO_DESCRIPTIONS = { | |
| 'image': 'A [32 x 32 x 1] RGB image.', | |
| 'label': 'A single integer between 0 and 9', | |
| } | |
| def get_split(split_name, dataset_dir, file_pattern=None, reader=None): | |
| """Gets a dataset tuple with instructions for reading MNIST. | |
| Args: | |
| split_name: A train/test split name. | |
| dataset_dir: The base directory of the dataset sources. | |
| Returns: | |
| A `Dataset` namedtuple. | |
| Raises: | |
| ValueError: if `split_name` is not a valid train/test split. | |
| """ | |
| if split_name not in _SPLITS_TO_SIZES: | |
| raise ValueError('split name %s was not recognized.' % split_name) | |
| if not file_pattern: | |
| file_pattern = _FILE_PATTERN | |
| file_pattern = os.path.join(dataset_dir, file_pattern % split_name) | |
| # Allowing None in the signature so that dataset_factory can use the default. | |
| if reader is None: | |
| reader = tf.TFRecordReader | |
| keys_to_features = { | |
| 'image/encoded': | |
| tf.FixedLenFeature((), tf.string, default_value=''), | |
| 'image/format': | |
| tf.FixedLenFeature((), tf.string, default_value='png'), | |
| 'image/class/label': | |
| tf.FixedLenFeature( | |
| [1], tf.int64, default_value=tf.zeros([1], dtype=tf.int64)), | |
| } | |
| items_to_handlers = { | |
| 'image': slim.tfexample_decoder.Image(shape=[32, 32, 3], channels=3), | |
| 'label': slim.tfexample_decoder.Tensor('image/class/label', shape=[]), | |
| } | |
| decoder = slim.tfexample_decoder.TFExampleDecoder( | |
| keys_to_features, items_to_handlers) | |
| labels_to_names = None | |
| if dataset_utils.has_labels(dataset_dir): | |
| labels_to_names = dataset_utils.read_label_file(dataset_dir) | |
| return slim.dataset.Dataset( | |
| data_sources=file_pattern, | |
| reader=reader, | |
| decoder=decoder, | |
| num_samples=_SPLITS_TO_SIZES[split_name], | |
| num_classes=_NUM_CLASSES, | |
| items_to_descriptions=_ITEMS_TO_DESCRIPTIONS, | |
| labels_to_names=labels_to_names) | |