Spaces:
Runtime error
Runtime error
| # Copyright 2016 The TensorFlow Authors All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Contains different architectures for the different DSN parts. | |
| We define here the modules that can be used in the different parts of the DSN | |
| model. | |
| - shared encoder (dsn_cropped_linemod, dann_xxxx) | |
| - private encoder (default_encoder) | |
| - decoder (large_decoder, gtsrb_decoder, small_decoder) | |
| """ | |
| import tensorflow as tf | |
| #from models.domain_adaptation.domain_separation | |
| import utils | |
| slim = tf.contrib.slim | |
| def default_batch_norm_params(is_training=False): | |
| """Returns default batch normalization parameters for DSNs. | |
| Args: | |
| is_training: whether or not the model is training. | |
| Returns: | |
| a dictionary that maps batch norm parameter names (strings) to values. | |
| """ | |
| return { | |
| # Decay for the moving averages. | |
| 'decay': 0.5, | |
| # epsilon to prevent 0s in variance. | |
| 'epsilon': 0.001, | |
| 'is_training': is_training | |
| } | |
| ################################################################################ | |
| # PRIVATE ENCODERS | |
| ################################################################################ | |
| def default_encoder(images, code_size, batch_norm_params=None, | |
| weight_decay=0.0): | |
| """Encodes the given images to codes of the given size. | |
| Args: | |
| images: a tensor of size [batch_size, height, width, 1]. | |
| code_size: the number of hidden units in the code layer of the classifier. | |
| batch_norm_params: a dictionary that maps batch norm parameter names to | |
| values. | |
| weight_decay: the value for the weight decay coefficient. | |
| Returns: | |
| end_points: the code of the input. | |
| """ | |
| end_points = {} | |
| with slim.arg_scope( | |
| [slim.conv2d, slim.fully_connected], | |
| weights_regularizer=slim.l2_regularizer(weight_decay), | |
| activation_fn=tf.nn.relu, | |
| normalizer_fn=slim.batch_norm, | |
| normalizer_params=batch_norm_params): | |
| with slim.arg_scope([slim.conv2d], kernel_size=[5, 5], padding='SAME'): | |
| net = slim.conv2d(images, 32, scope='conv1') | |
| net = slim.max_pool2d(net, [2, 2], 2, scope='pool1') | |
| net = slim.conv2d(net, 64, scope='conv2') | |
| net = slim.max_pool2d(net, [2, 2], 2, scope='pool2') | |
| net = slim.flatten(net) | |
| end_points['flatten'] = net | |
| net = slim.fully_connected(net, code_size, scope='fc1') | |
| end_points['fc3'] = net | |
| return end_points | |
| ################################################################################ | |
| # DECODERS | |
| ################################################################################ | |
| def large_decoder(codes, | |
| height, | |
| width, | |
| channels, | |
| batch_norm_params=None, | |
| weight_decay=0.0): | |
| """Decodes the codes to a fixed output size. | |
| Args: | |
| codes: a tensor of size [batch_size, code_size]. | |
| height: the height of the output images. | |
| width: the width of the output images. | |
| channels: the number of the output channels. | |
| batch_norm_params: a dictionary that maps batch norm parameter names to | |
| values. | |
| weight_decay: the value for the weight decay coefficient. | |
| Returns: | |
| recons: the reconstruction tensor of shape [batch_size, height, width, 3]. | |
| """ | |
| with slim.arg_scope( | |
| [slim.conv2d, slim.fully_connected], | |
| weights_regularizer=slim.l2_regularizer(weight_decay), | |
| activation_fn=tf.nn.relu, | |
| normalizer_fn=slim.batch_norm, | |
| normalizer_params=batch_norm_params): | |
| net = slim.fully_connected(codes, 600, scope='fc1') | |
| batch_size = net.get_shape().as_list()[0] | |
| net = tf.reshape(net, [batch_size, 10, 10, 6]) | |
| net = slim.conv2d(net, 32, [5, 5], scope='conv1_1') | |
| net = tf.image.resize_nearest_neighbor(net, (16, 16)) | |
| net = slim.conv2d(net, 32, [5, 5], scope='conv2_1') | |
| net = tf.image.resize_nearest_neighbor(net, (32, 32)) | |
| net = slim.conv2d(net, 32, [5, 5], scope='conv3_2') | |
| output_size = [height, width] | |
| net = tf.image.resize_nearest_neighbor(net, output_size) | |
| with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]): | |
| net = slim.conv2d(net, channels, activation_fn=None, scope='conv4_1') | |
| return net | |
| def gtsrb_decoder(codes, | |
| height, | |
| width, | |
| channels, | |
| batch_norm_params=None, | |
| weight_decay=0.0): | |
| """Decodes the codes to a fixed output size. This decoder is specific to GTSRB | |
| Args: | |
| codes: a tensor of size [batch_size, 100]. | |
| height: the height of the output images. | |
| width: the width of the output images. | |
| channels: the number of the output channels. | |
| batch_norm_params: a dictionary that maps batch norm parameter names to | |
| values. | |
| weight_decay: the value for the weight decay coefficient. | |
| Returns: | |
| recons: the reconstruction tensor of shape [batch_size, height, width, 3]. | |
| Raises: | |
| ValueError: When the input code size is not 100. | |
| """ | |
| batch_size, code_size = codes.get_shape().as_list() | |
| if code_size != 100: | |
| raise ValueError('The code size used as an input to the GTSRB decoder is ' | |
| 'expected to be 100.') | |
| with slim.arg_scope( | |
| [slim.conv2d, slim.fully_connected], | |
| weights_regularizer=slim.l2_regularizer(weight_decay), | |
| activation_fn=tf.nn.relu, | |
| normalizer_fn=slim.batch_norm, | |
| normalizer_params=batch_norm_params): | |
| net = codes | |
| net = tf.reshape(net, [batch_size, 10, 10, 1]) | |
| net = slim.conv2d(net, 32, [3, 3], scope='conv1_1') | |
| # First upsampling 20x20 | |
| net = tf.image.resize_nearest_neighbor(net, [20, 20]) | |
| net = slim.conv2d(net, 32, [3, 3], scope='conv2_1') | |
| output_size = [height, width] | |
| # Final upsampling 40 x 40 | |
| net = tf.image.resize_nearest_neighbor(net, output_size) | |
| with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]): | |
| net = slim.conv2d(net, 16, scope='conv3_1') | |
| net = slim.conv2d(net, channels, activation_fn=None, scope='conv3_2') | |
| return net | |
| def small_decoder(codes, | |
| height, | |
| width, | |
| channels, | |
| batch_norm_params=None, | |
| weight_decay=0.0): | |
| """Decodes the codes to a fixed output size. | |
| Args: | |
| codes: a tensor of size [batch_size, code_size]. | |
| height: the height of the output images. | |
| width: the width of the output images. | |
| channels: the number of the output channels. | |
| batch_norm_params: a dictionary that maps batch norm parameter names to | |
| values. | |
| weight_decay: the value for the weight decay coefficient. | |
| Returns: | |
| recons: the reconstruction tensor of shape [batch_size, height, width, 3]. | |
| """ | |
| with slim.arg_scope( | |
| [slim.conv2d, slim.fully_connected], | |
| weights_regularizer=slim.l2_regularizer(weight_decay), | |
| activation_fn=tf.nn.relu, | |
| normalizer_fn=slim.batch_norm, | |
| normalizer_params=batch_norm_params): | |
| net = slim.fully_connected(codes, 300, scope='fc1') | |
| batch_size = net.get_shape().as_list()[0] | |
| net = tf.reshape(net, [batch_size, 10, 10, 3]) | |
| net = slim.conv2d(net, 16, [3, 3], scope='conv1_1') | |
| net = slim.conv2d(net, 16, [3, 3], scope='conv1_2') | |
| output_size = [height, width] | |
| net = tf.image.resize_nearest_neighbor(net, output_size) | |
| with slim.arg_scope([slim.conv2d], kernel_size=[3, 3]): | |
| net = slim.conv2d(net, 16, scope='conv2_1') | |
| net = slim.conv2d(net, channels, activation_fn=None, scope='conv2_2') | |
| return net | |
| ################################################################################ | |
| # SHARED ENCODERS | |
| ################################################################################ | |
| def dann_mnist(images, | |
| weight_decay=0.0, | |
| prefix='model', | |
| num_classes=10, | |
| **kwargs): | |
| """Creates a convolution MNIST model. | |
| Note that this model implements the architecture for MNIST proposed in: | |
| Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN), | |
| JMLR 2015 | |
| Args: | |
| images: the MNIST digits, a tensor of size [batch_size, 28, 28, 1]. | |
| weight_decay: the value for the weight decay coefficient. | |
| prefix: name of the model to use when prefixing tags. | |
| num_classes: the number of output classes to use. | |
| **kwargs: Placeholder for keyword arguments used by other shared encoders. | |
| Returns: | |
| the output logits, a tensor of size [batch_size, num_classes]. | |
| a dictionary with key/values the layer names and tensors. | |
| """ | |
| end_points = {} | |
| with slim.arg_scope( | |
| [slim.conv2d, slim.fully_connected], | |
| weights_regularizer=slim.l2_regularizer(weight_decay), | |
| activation_fn=tf.nn.relu,): | |
| with slim.arg_scope([slim.conv2d], padding='SAME'): | |
| end_points['conv1'] = slim.conv2d(images, 32, [5, 5], scope='conv1') | |
| end_points['pool1'] = slim.max_pool2d( | |
| end_points['conv1'], [2, 2], 2, scope='pool1') | |
| end_points['conv2'] = slim.conv2d( | |
| end_points['pool1'], 48, [5, 5], scope='conv2') | |
| end_points['pool2'] = slim.max_pool2d( | |
| end_points['conv2'], [2, 2], 2, scope='pool2') | |
| end_points['fc3'] = slim.fully_connected( | |
| slim.flatten(end_points['pool2']), 100, scope='fc3') | |
| end_points['fc4'] = slim.fully_connected( | |
| slim.flatten(end_points['fc3']), 100, scope='fc4') | |
| logits = slim.fully_connected( | |
| end_points['fc4'], num_classes, activation_fn=None, scope='fc5') | |
| return logits, end_points | |
| def dann_svhn(images, | |
| weight_decay=0.0, | |
| prefix='model', | |
| num_classes=10, | |
| **kwargs): | |
| """Creates the convolutional SVHN model. | |
| Note that this model implements the architecture for MNIST proposed in: | |
| Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN), | |
| JMLR 2015 | |
| Args: | |
| images: the SVHN digits, a tensor of size [batch_size, 32, 32, 3]. | |
| weight_decay: the value for the weight decay coefficient. | |
| prefix: name of the model to use when prefixing tags. | |
| num_classes: the number of output classes to use. | |
| **kwargs: Placeholder for keyword arguments used by other shared encoders. | |
| Returns: | |
| the output logits, a tensor of size [batch_size, num_classes]. | |
| a dictionary with key/values the layer names and tensors. | |
| """ | |
| end_points = {} | |
| with slim.arg_scope( | |
| [slim.conv2d, slim.fully_connected], | |
| weights_regularizer=slim.l2_regularizer(weight_decay), | |
| activation_fn=tf.nn.relu,): | |
| with slim.arg_scope([slim.conv2d], padding='SAME'): | |
| end_points['conv1'] = slim.conv2d(images, 64, [5, 5], scope='conv1') | |
| end_points['pool1'] = slim.max_pool2d( | |
| end_points['conv1'], [3, 3], 2, scope='pool1') | |
| end_points['conv2'] = slim.conv2d( | |
| end_points['pool1'], 64, [5, 5], scope='conv2') | |
| end_points['pool2'] = slim.max_pool2d( | |
| end_points['conv2'], [3, 3], 2, scope='pool2') | |
| end_points['conv3'] = slim.conv2d( | |
| end_points['pool2'], 128, [5, 5], scope='conv3') | |
| end_points['fc3'] = slim.fully_connected( | |
| slim.flatten(end_points['conv3']), 3072, scope='fc3') | |
| end_points['fc4'] = slim.fully_connected( | |
| slim.flatten(end_points['fc3']), 2048, scope='fc4') | |
| logits = slim.fully_connected( | |
| end_points['fc4'], num_classes, activation_fn=None, scope='fc5') | |
| return logits, end_points | |
| def dann_gtsrb(images, | |
| weight_decay=0.0, | |
| prefix='model', | |
| num_classes=43, | |
| **kwargs): | |
| """Creates the convolutional GTSRB model. | |
| Note that this model implements the architecture for MNIST proposed in: | |
| Y. Ganin et al., Domain-Adversarial Training of Neural Networks (DANN), | |
| JMLR 2015 | |
| Args: | |
| images: the GTSRB images, a tensor of size [batch_size, 40, 40, 3]. | |
| weight_decay: the value for the weight decay coefficient. | |
| prefix: name of the model to use when prefixing tags. | |
| num_classes: the number of output classes to use. | |
| **kwargs: Placeholder for keyword arguments used by other shared encoders. | |
| Returns: | |
| the output logits, a tensor of size [batch_size, num_classes]. | |
| a dictionary with key/values the layer names and tensors. | |
| """ | |
| end_points = {} | |
| with slim.arg_scope( | |
| [slim.conv2d, slim.fully_connected], | |
| weights_regularizer=slim.l2_regularizer(weight_decay), | |
| activation_fn=tf.nn.relu,): | |
| with slim.arg_scope([slim.conv2d], padding='SAME'): | |
| end_points['conv1'] = slim.conv2d(images, 96, [5, 5], scope='conv1') | |
| end_points['pool1'] = slim.max_pool2d( | |
| end_points['conv1'], [2, 2], 2, scope='pool1') | |
| end_points['conv2'] = slim.conv2d( | |
| end_points['pool1'], 144, [3, 3], scope='conv2') | |
| end_points['pool2'] = slim.max_pool2d( | |
| end_points['conv2'], [2, 2], 2, scope='pool2') | |
| end_points['conv3'] = slim.conv2d( | |
| end_points['pool2'], 256, [5, 5], scope='conv3') | |
| end_points['pool3'] = slim.max_pool2d( | |
| end_points['conv3'], [2, 2], 2, scope='pool3') | |
| end_points['fc3'] = slim.fully_connected( | |
| slim.flatten(end_points['pool3']), 512, scope='fc3') | |
| logits = slim.fully_connected( | |
| end_points['fc3'], num_classes, activation_fn=None, scope='fc4') | |
| return logits, end_points | |
| def dsn_cropped_linemod(images, | |
| weight_decay=0.0, | |
| prefix='model', | |
| num_classes=11, | |
| batch_norm_params=None, | |
| is_training=False): | |
| """Creates the convolutional pose estimation model for Cropped Linemod. | |
| Args: | |
| images: the Cropped Linemod samples, a tensor of size | |
| [batch_size, 64, 64, 4]. | |
| weight_decay: the value for the weight decay coefficient. | |
| prefix: name of the model to use when prefixing tags. | |
| num_classes: the number of output classes to use. | |
| batch_norm_params: a dictionary that maps batch norm parameter names to | |
| values. | |
| is_training: specifies whether or not we're currently training the model. | |
| This variable will determine the behaviour of the dropout layer. | |
| Returns: | |
| the output logits, a tensor of size [batch_size, num_classes]. | |
| a dictionary with key/values the layer names and tensors. | |
| """ | |
| end_points = {} | |
| tf.summary.image('{}/input_images'.format(prefix), images) | |
| with slim.arg_scope( | |
| [slim.conv2d, slim.fully_connected], | |
| weights_regularizer=slim.l2_regularizer(weight_decay), | |
| activation_fn=tf.nn.relu, | |
| normalizer_fn=slim.batch_norm if batch_norm_params else None, | |
| normalizer_params=batch_norm_params): | |
| with slim.arg_scope([slim.conv2d], padding='SAME'): | |
| end_points['conv1'] = slim.conv2d(images, 32, [5, 5], scope='conv1') | |
| end_points['pool1'] = slim.max_pool2d( | |
| end_points['conv1'], [2, 2], 2, scope='pool1') | |
| end_points['conv2'] = slim.conv2d( | |
| end_points['pool1'], 64, [5, 5], scope='conv2') | |
| end_points['pool2'] = slim.max_pool2d( | |
| end_points['conv2'], [2, 2], 2, scope='pool2') | |
| net = slim.flatten(end_points['pool2']) | |
| end_points['fc3'] = slim.fully_connected(net, 128, scope='fc3') | |
| net = slim.dropout( | |
| end_points['fc3'], 0.5, is_training=is_training, scope='dropout') | |
| with tf.variable_scope('quaternion_prediction'): | |
| predicted_quaternion = slim.fully_connected( | |
| net, 4, activation_fn=tf.nn.tanh) | |
| predicted_quaternion = tf.nn.l2_normalize(predicted_quaternion, 1) | |
| logits = slim.fully_connected( | |
| net, num_classes, activation_fn=None, scope='fc4') | |
| end_points['quaternion_pred'] = predicted_quaternion | |
| return logits, end_points | |