Spaces:
Runtime error
Runtime error
| # Copyright 2018 The TensorFlow Authors All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Adapted from rllab maze_env_utils.py.""" | |
| import numpy as np | |
| import math | |
| class Move(object): | |
| X = 11 | |
| Y = 12 | |
| Z = 13 | |
| XY = 14 | |
| XZ = 15 | |
| YZ = 16 | |
| XYZ = 17 | |
| SpinXY = 18 | |
| def can_move_x(movable): | |
| return movable in [Move.X, Move.XY, Move.XZ, Move.XYZ, | |
| Move.SpinXY] | |
| def can_move_y(movable): | |
| return movable in [Move.Y, Move.XY, Move.YZ, Move.XYZ, | |
| Move.SpinXY] | |
| def can_move_z(movable): | |
| return movable in [Move.Z, Move.XZ, Move.YZ, Move.XYZ] | |
| def can_spin(movable): | |
| return movable in [Move.SpinXY] | |
| def can_move(movable): | |
| return can_move_x(movable) or can_move_y(movable) or can_move_z(movable) | |
| def construct_maze(maze_id='Maze'): | |
| if maze_id == 'Maze': | |
| structure = [ | |
| [1, 1, 1, 1, 1], | |
| [1, 'r', 0, 0, 1], | |
| [1, 1, 1, 0, 1], | |
| [1, 0, 0, 0, 1], | |
| [1, 1, 1, 1, 1], | |
| ] | |
| elif maze_id == 'Push': | |
| structure = [ | |
| [1, 1, 1, 1, 1], | |
| [1, 0, 'r', 1, 1], | |
| [1, 0, Move.XY, 0, 1], | |
| [1, 1, 0, 1, 1], | |
| [1, 1, 1, 1, 1], | |
| ] | |
| elif maze_id == 'Fall': | |
| structure = [ | |
| [1, 1, 1, 1], | |
| [1, 'r', 0, 1], | |
| [1, 0, Move.YZ, 1], | |
| [1, -1, -1, 1], | |
| [1, 0, 0, 1], | |
| [1, 1, 1, 1], | |
| ] | |
| elif maze_id == 'Block': | |
| O = 'r' | |
| structure = [ | |
| [1, 1, 1, 1, 1], | |
| [1, O, 0, 0, 1], | |
| [1, 0, 0, 0, 1], | |
| [1, 0, 0, 0, 1], | |
| [1, 1, 1, 1, 1], | |
| ] | |
| elif maze_id == 'BlockMaze': | |
| O = 'r' | |
| structure = [ | |
| [1, 1, 1, 1], | |
| [1, O, 0, 1], | |
| [1, 1, 0, 1], | |
| [1, 0, 0, 1], | |
| [1, 1, 1, 1], | |
| ] | |
| else: | |
| raise NotImplementedError('The provided MazeId %s is not recognized' % maze_id) | |
| return structure | |
| def line_intersect(pt1, pt2, ptA, ptB): | |
| """ | |
| Taken from https://www.cs.hmc.edu/ACM/lectures/intersections.html | |
| this returns the intersection of Line(pt1,pt2) and Line(ptA,ptB) | |
| """ | |
| DET_TOLERANCE = 0.00000001 | |
| # the first line is pt1 + r*(pt2-pt1) | |
| # in component form: | |
| x1, y1 = pt1 | |
| x2, y2 = pt2 | |
| dx1 = x2 - x1 | |
| dy1 = y2 - y1 | |
| # the second line is ptA + s*(ptB-ptA) | |
| x, y = ptA | |
| xB, yB = ptB | |
| dx = xB - x | |
| dy = yB - y | |
| DET = (-dx1 * dy + dy1 * dx) | |
| if math.fabs(DET) < DET_TOLERANCE: return (0, 0, 0, 0, 0) | |
| # now, the determinant should be OK | |
| DETinv = 1.0 / DET | |
| # find the scalar amount along the "self" segment | |
| r = DETinv * (-dy * (x - x1) + dx * (y - y1)) | |
| # find the scalar amount along the input line | |
| s = DETinv * (-dy1 * (x - x1) + dx1 * (y - y1)) | |
| # return the average of the two descriptions | |
| xi = (x1 + r * dx1 + x + s * dx) / 2.0 | |
| yi = (y1 + r * dy1 + y + s * dy) / 2.0 | |
| return (xi, yi, 1, r, s) | |
| def ray_segment_intersect(ray, segment): | |
| """ | |
| Check if the ray originated from (x, y) with direction theta intersects the line segment (x1, y1) -- (x2, y2), | |
| and return the intersection point if there is one | |
| """ | |
| (x, y), theta = ray | |
| # (x1, y1), (x2, y2) = segment | |
| pt1 = (x, y) | |
| len = 1 | |
| pt2 = (x + len * math.cos(theta), y + len * math.sin(theta)) | |
| xo, yo, valid, r, s = line_intersect(pt1, pt2, *segment) | |
| if valid and r >= 0 and 0 <= s <= 1: | |
| return (xo, yo) | |
| return None | |
| def point_distance(p1, p2): | |
| x1, y1 = p1 | |
| x2, y2 = p2 | |
| return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5 | |