Spaces:
Runtime error
Runtime error
| # Copyright 2017 Google, Inc. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """A trainable optimizer that learns a learning rate schedule.""" | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import tensorflow as tf | |
| from learned_optimizer.optimizer import trainable_optimizer | |
| class LearningRateSchedule(trainable_optimizer.TrainableOptimizer): | |
| """Learns a learning rate schedule over a fixed number of iterations.""" | |
| def __init__(self, initial_rate=0.0, n_steps=1000, **kwargs): | |
| """Initializes the learning rates.""" | |
| self.max_index = tf.constant(n_steps-1, dtype=tf.int32) | |
| with tf.variable_scope(trainable_optimizer.OPTIMIZER_SCOPE): | |
| initializer = tf.constant_initializer(initial_rate) | |
| self.learning_rates = tf.get_variable("learning_rates", | |
| shape=([n_steps,]), | |
| initializer=initializer) | |
| super(LearningRateSchedule, self).__init__("LRS", ["itr"], **kwargs) | |
| def _initialize_state(self, var): | |
| """Return a dictionary mapping names of state variables to their values.""" | |
| return { | |
| "itr": tf.constant(0, dtype=tf.int32), | |
| } | |
| def _compute_update(self, param, grad, state): | |
| """Compute updates of parameters.""" | |
| # get the learning rate at the current index, if the index | |
| # is greater than the number of available learning rates, | |
| # use the last one | |
| index = tf.minimum(state["itr"], self.max_index) | |
| learning_rate = tf.gather(self.learning_rates, index) | |
| # update the parameters: parameter - learning_rate * gradient | |
| updated_param = param - tf.scalar_mul(learning_rate, grad) | |
| return updated_param, {"itr": state["itr"] + 1} | |