Spaces:
Runtime error
Runtime error
| # Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Zoneout Wrapper""" | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import tensorflow as tf | |
| class ZoneoutWrapper(tf.contrib.rnn.RNNCell): | |
| """Add Zoneout to a RNN cell.""" | |
| def __init__(self, cell, zoneout_drop_prob, is_training=True): | |
| self._cell = cell | |
| self._zoneout_prob = zoneout_drop_prob | |
| self._is_training = is_training | |
| def state_size(self): | |
| return self._cell.state_size | |
| def output_size(self): | |
| return self._cell.output_size | |
| def __call__(self, inputs, state, scope=None): | |
| output, new_state = self._cell(inputs, state, scope) | |
| if not isinstance(self._cell.state_size, tuple): | |
| new_state = tf.split(value=new_state, num_or_size_splits=2, axis=1) | |
| state = tf.split(value=state, num_or_size_splits=2, axis=1) | |
| final_new_state = [new_state[0], new_state[1]] | |
| if self._is_training: | |
| for i, state_element in enumerate(state): | |
| random_tensor = 1 - self._zoneout_prob # keep probability | |
| random_tensor += tf.random_uniform(tf.shape(state_element)) | |
| # 0. if [zoneout_prob, 1.0) and 1. if [1.0, 1.0 + zoneout_prob) | |
| binary_tensor = tf.floor(random_tensor) | |
| final_new_state[ | |
| i] = (new_state[i] - state_element) * binary_tensor + state_element | |
| else: | |
| for i, state_element in enumerate(state): | |
| final_new_state[ | |
| i] = state_element * self._zoneout_prob + new_state[i] * ( | |
| 1 - self._zoneout_prob) | |
| if isinstance(self._cell.state_size, tuple): | |
| return output, tf.contrib.rnn.LSTMStateTuple( | |
| final_new_state[0], final_new_state[1]) | |
| return output, tf.concat([final_new_state[0], final_new_state[1]], 1) | |