Spaces:
Runtime error
Runtime error
| # Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Objectives for full-episode. | |
| Implementations of UREX & REINFORCE. Note that these implementations | |
| use a non-parametric baseline to reduce variance. Thus, multiple | |
| samples with the same seed must be taken from the environment. | |
| """ | |
| import tensorflow as tf | |
| import objective | |
| class Reinforce(objective.Objective): | |
| def __init__(self, learning_rate, clip_norm, num_samples, | |
| tau=0.1, bonus_weight=1.0): | |
| super(Reinforce, self).__init__(learning_rate, clip_norm=clip_norm) | |
| self.num_samples = num_samples | |
| assert self.num_samples > 1 | |
| self.tau = tau | |
| self.bonus_weight = bonus_weight | |
| self.eps_lambda = 0.0 | |
| def get_bonus(self, total_rewards, total_log_probs): | |
| """Exploration bonus.""" | |
| return -self.tau * total_log_probs | |
| def get(self, rewards, pads, values, final_values, | |
| log_probs, prev_log_probs, target_log_probs, | |
| entropies, logits, | |
| target_values, final_target_values): | |
| seq_length = tf.shape(rewards)[0] | |
| not_pad = tf.reshape(1 - pads, [seq_length, -1, self.num_samples]) | |
| rewards = not_pad * tf.reshape(rewards, [seq_length, -1, self.num_samples]) | |
| log_probs = not_pad * tf.reshape(sum(log_probs), [seq_length, -1, self.num_samples]) | |
| total_rewards = tf.reduce_sum(rewards, 0) | |
| total_log_probs = tf.reduce_sum(log_probs, 0) | |
| rewards_and_bonus = (total_rewards + | |
| self.bonus_weight * | |
| self.get_bonus(total_rewards, total_log_probs)) | |
| baseline = tf.reduce_mean(rewards_and_bonus, 1, keep_dims=True) | |
| loss = -tf.stop_gradient(rewards_and_bonus - baseline) * total_log_probs | |
| loss = tf.reduce_mean(loss) | |
| raw_loss = loss # TODO | |
| gradient_ops = self.training_ops( | |
| loss, learning_rate=self.learning_rate) | |
| tf.summary.histogram('log_probs', total_log_probs) | |
| tf.summary.histogram('rewards', total_rewards) | |
| tf.summary.scalar('avg_rewards', | |
| tf.reduce_mean(total_rewards)) | |
| tf.summary.scalar('loss', loss) | |
| return loss, raw_loss, baseline, gradient_ops, tf.summary.merge_all() | |
| class UREX(Reinforce): | |
| def get_bonus(self, total_rewards, total_log_probs): | |
| """Exploration bonus.""" | |
| discrepancy = total_rewards / self.tau - total_log_probs | |
| normalized_d = self.num_samples * tf.nn.softmax(discrepancy) | |
| return self.tau * normalized_d | |