Spaces:
Runtime error
Runtime error
| # Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ============================================================================== | |
| """Factory module for different encoder/decoder network models.""" | |
| from __future__ import absolute_import | |
| from __future__ import division | |
| from __future__ import print_function | |
| import tensorflow as tf | |
| from nets import ptn_encoder | |
| from nets import ptn_im_decoder | |
| from nets import ptn_rotator | |
| _NAME_TO_NETS = { | |
| 'ptn_encoder': ptn_encoder, | |
| 'ptn_rotator': ptn_rotator, | |
| 'ptn_im_decoder': ptn_im_decoder, | |
| } | |
| def _get_network(name): | |
| """Gets a single network component.""" | |
| if name not in _NAME_TO_NETS: | |
| raise ValueError('Network name [%s] not recognized.' % name) | |
| return _NAME_TO_NETS[name].model | |
| def get(params, is_training=False, reuse=False): | |
| """Factory function to retrieve a network model. | |
| Args: | |
| params: Different parameters used througout ptn, typically FLAGS (dict) | |
| is_training: Set to True if while training (boolean) | |
| reuse: Set as True if either using a pre-trained model or | |
| in the training loop while the graph has already been built (boolean) | |
| Returns: | |
| Model function for network (inputs to outputs) | |
| """ | |
| def model(inputs): | |
| """Model function corresponding to a specific network architecture.""" | |
| outputs = {} | |
| # First, build the encoder. | |
| encoder_fn = _get_network(params.encoder_name) | |
| with tf.variable_scope('encoder', reuse=reuse): | |
| # Produces id/pose units | |
| features = encoder_fn(inputs['images_0'], params, is_training) | |
| outputs['ids'] = features['ids'] | |
| outputs['poses_0'] = features['poses'] | |
| # Second, build the rotator and decoder. | |
| rotator_fn = _get_network(params.rotator_name) | |
| with tf.variable_scope('rotator', reuse=reuse): | |
| outputs['poses_1'] = rotator_fn(outputs['poses_0'], inputs['actions'], | |
| params, is_training) | |
| decoder_fn = _get_network(params.decoder_name) | |
| with tf.variable_scope('decoder', reuse=reuse): | |
| dec_output = decoder_fn(outputs['ids'], outputs['poses_1'], params, | |
| is_training) | |
| outputs['images_1'] = dec_output['images'] | |
| outputs['masks_1'] = dec_output['masks'] | |
| # Third, build the recurrent connection | |
| for k in range(1, params.step_size): | |
| with tf.variable_scope('rotator', reuse=True): | |
| outputs['poses_%d' % (k + 1)] = rotator_fn( | |
| outputs['poses_%d' % k], inputs['actions'], params, is_training) | |
| with tf.variable_scope('decoder', reuse=True): | |
| dec_output = decoder_fn(outputs['ids'], outputs['poses_%d' % (k + 1)], | |
| params, is_training) | |
| outputs['images_%d' % (k + 1)] = dec_output['images'] | |
| outputs['masks_%d' % (k + 1)] = dec_output['masks'] | |
| return outputs | |
| return model | |