error fixed for date issue
Browse files- dashboard.py +247 -221
dashboard.py
CHANGED
|
@@ -1,221 +1,247 @@
|
|
| 1 |
-
import yfinance as yf
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import streamlit as st
|
| 4 |
-
from datetime import datetime, timedelta
|
| 5 |
-
|
| 6 |
-
# Fetch Nifty 50 tickers
|
| 7 |
-
def fetch_nifty50_tickers():
|
| 8 |
-
return [
|
| 9 |
-
"TATAMOTORS.NS", "RELIANCE.NS", "INFY.NS", "HDFCBANK.NS", "ICICIBANK.NS",
|
| 10 |
-
"SBIN.NS", "ITC.NS", "AXISBANK.NS", "MARUTI.NS", "TATASTEEL.NS",
|
| 11 |
-
"WIPRO.NS", "SUNPHARMA.NS", "HINDALCO.NS", "HCLTECH.NS", "NTPC.NS",
|
| 12 |
-
"L&T.NS", "M&M.NS", "ONGC.NS", "HDFCLIFE.NS", "ULTRACEMCO.NS",
|
| 13 |
-
"ADANIGREEN.NS", "BHARTIARTL.NS", "BAJAJFINSV.NS", "JSWSTEEL.NS", "DIVISLAB.NS",
|
| 14 |
-
"POWERGRID.NS", "KOTAKBANK.NS", "HINDUNILVR.NS", "TCS.NS", "CIPLA.NS",
|
| 15 |
-
"ASIANPAINT.NS", "GRASIM.NS", "BRITANNIA.NS", "SHREECEM.NS",
|
| 16 |
-
"TECHM.NS", "INDUSINDBK.NS", "EICHERMOT.NS", "COALINDIA.NS", "GAIL.NS",
|
| 17 |
-
"BOSCHLTD.NS", "M&MFIN.NS", "IDFCFIRSTB.NS", "HAVELLS.NS"
|
| 18 |
-
]
|
| 19 |
-
|
| 20 |
-
# Fetch large cap tickers
|
| 21 |
-
def fetch_large_cap_tickers():
|
| 22 |
-
return fetch_nifty50_tickers() # Assuming large caps are the same as Nifty 50
|
| 23 |
-
|
| 24 |
-
# Fetch small cap tickers
|
| 25 |
-
def fetch_small_cap_tickers():
|
| 26 |
-
return [
|
| 27 |
-
"ALOKINDS.NS", "ADANIENT.NS", "AARTIIND.NS", "AVANTIFEED.NS", "BLS.IN",
|
| 28 |
-
"BHEL.NS", "BIRLACORP.NS", "CARBORUNIV.NS", "CENTRALBANK.NS", "EMAMILTD.NS",
|
| 29 |
-
"FDC.NS", "GLAXO.NS", "GODFRYPHLP.NS", "GSKCONS.NS", "HAVELLS.NS",
|
| 30 |
-
"HEMIPAPER.NS", "HIL.NS", "JINDALSAW.NS", "JUBLFOOD.NS", "KOTAKMAH.NS",
|
| 31 |
-
"MSTCLAS.NS", "NCC.NS", "PAGEIND.NS", "PIIND.NS", "SBI.CN",
|
| 32 |
-
"SISL.NS", "SOMANYCERA.NS", "STAR.NS", "SUNDARAM.NS", "TATAINVEST.NS",
|
| 33 |
-
"VSTIND.NS", "WABCOINDIA.NS", "WELCORP.NS", "ZEELEARN.NS", "ZOMATO.NS"
|
| 34 |
-
]
|
| 35 |
-
|
| 36 |
-
# Get top movers
|
| 37 |
-
def get_top_movers(tickers, days=1):
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
def
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
st.
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import yfinance as yf
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from datetime import datetime, timedelta
|
| 5 |
+
|
| 6 |
+
# Fetch Nifty 50 tickers
|
| 7 |
+
def fetch_nifty50_tickers():
|
| 8 |
+
return [
|
| 9 |
+
"TATAMOTORS.NS", "RELIANCE.NS", "INFY.NS", "HDFCBANK.NS", "ICICIBANK.NS",
|
| 10 |
+
"SBIN.NS", "ITC.NS", "AXISBANK.NS", "MARUTI.NS", "TATASTEEL.NS",
|
| 11 |
+
"WIPRO.NS", "SUNPHARMA.NS", "HINDALCO.NS", "HCLTECH.NS", "NTPC.NS",
|
| 12 |
+
"L&T.NS", "M&M.NS", "ONGC.NS", "HDFCLIFE.NS", "ULTRACEMCO.NS",
|
| 13 |
+
"ADANIGREEN.NS", "BHARTIARTL.NS", "BAJAJFINSV.NS", "JSWSTEEL.NS", "DIVISLAB.NS",
|
| 14 |
+
"POWERGRID.NS", "KOTAKBANK.NS", "HINDUNILVR.NS", "TCS.NS", "CIPLA.NS",
|
| 15 |
+
"ASIANPAINT.NS", "GRASIM.NS", "BRITANNIA.NS", "SHREECEM.NS",
|
| 16 |
+
"TECHM.NS", "INDUSINDBK.NS", "EICHERMOT.NS", "COALINDIA.NS", "GAIL.NS",
|
| 17 |
+
"BOSCHLTD.NS", "M&MFIN.NS", "IDFCFIRSTB.NS", "HAVELLS.NS"
|
| 18 |
+
]
|
| 19 |
+
|
| 20 |
+
# Fetch large cap tickers
|
| 21 |
+
def fetch_large_cap_tickers():
|
| 22 |
+
return fetch_nifty50_tickers() # Assuming large caps are the same as Nifty 50
|
| 23 |
+
|
| 24 |
+
# Fetch small cap tickers
|
| 25 |
+
def fetch_small_cap_tickers():
|
| 26 |
+
return [
|
| 27 |
+
"ALOKINDS.NS", "ADANIENT.NS", "AARTIIND.NS", "AVANTIFEED.NS", "BLS.IN",
|
| 28 |
+
"BHEL.NS", "BIRLACORP.NS", "CARBORUNIV.NS", "CENTRALBANK.NS", "EMAMILTD.NS",
|
| 29 |
+
"FDC.NS", "GLAXO.NS", "GODFRYPHLP.NS", "GSKCONS.NS", "HAVELLS.NS",
|
| 30 |
+
"HEMIPAPER.NS", "HIL.NS", "JINDALSAW.NS", "JUBLFOOD.NS", "KOTAKMAH.NS",
|
| 31 |
+
"MSTCLAS.NS", "NCC.NS", "PAGEIND.NS", "PIIND.NS", "SBI.CN",
|
| 32 |
+
"SISL.NS", "SOMANYCERA.NS", "STAR.NS", "SUNDARAM.NS", "TATAINVEST.NS",
|
| 33 |
+
"VSTIND.NS", "WABCOINDIA.NS", "WELCORP.NS", "ZEELEARN.NS", "ZOMATO.NS"
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
# Get top movers
|
| 37 |
+
# def get_top_movers(tickers, days=1):
|
| 38 |
+
# end_date = datetime.now()
|
| 39 |
+
# start_date = end_date - timedelta(days=days)
|
| 40 |
+
|
| 41 |
+
# data = {}
|
| 42 |
+
# for ticker in tickers:
|
| 43 |
+
# try:
|
| 44 |
+
# df = yf.download(ticker, start=start_date, end=end_date)
|
| 45 |
+
# if not df.empty and 'Close' in df.columns:
|
| 46 |
+
# df['Ticker'] = ticker
|
| 47 |
+
# data[ticker] = df['Close'].pct_change().iloc[-1] # Percentage change
|
| 48 |
+
# except Exception as e:
|
| 49 |
+
# st.error(f"Error fetching data for {ticker}: {e}")
|
| 50 |
+
|
| 51 |
+
# sorted_data = sorted(data.items(), key=lambda x: x[1], reverse=True)
|
| 52 |
+
# top_gainers = sorted_data[:10]
|
| 53 |
+
# top_losers = sorted_data[-10:]
|
| 54 |
+
|
| 55 |
+
# return top_gainers, top_losers
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def get_top_movers(tickers, days=5):
|
| 59 |
+
import yfinance as yf
|
| 60 |
+
data = {}
|
| 61 |
+
|
| 62 |
+
for ticker in tickers:
|
| 63 |
+
try:
|
| 64 |
+
df = yf.download(ticker, period=f"{days}d")
|
| 65 |
+
if not df.empty:
|
| 66 |
+
# compute % change from first to last close
|
| 67 |
+
pct_change = ((df['Close'].iloc[-1] - df['Close'].iloc[0]) / df['Close'].iloc[0]) * 100
|
| 68 |
+
data[ticker] = pct_change
|
| 69 |
+
except Exception as e:
|
| 70 |
+
print(f"Error fetching {ticker}: {e}")
|
| 71 |
+
|
| 72 |
+
# Now each value is a scalar float
|
| 73 |
+
sorted_data = sorted(data.items(), key=lambda x: x[1], reverse=True)
|
| 74 |
+
|
| 75 |
+
top_gainers = sorted_data[:5]
|
| 76 |
+
top_losers = sorted_data[-5:]
|
| 77 |
+
|
| 78 |
+
return top_gainers, top_losers
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
# Format DataFrame with color
|
| 82 |
+
def format_df(df):
|
| 83 |
+
if not df.empty:
|
| 84 |
+
df['Percentage Change'] = pd.to_numeric(df['Percentage Change'], errors='coerce')
|
| 85 |
+
return df.style.applymap(lambda x: 'color: green' if x > 0 else 'color: red', subset=['Percentage Change'])
|
| 86 |
+
return df
|
| 87 |
+
|
| 88 |
+
# Display dashboard
|
| 89 |
+
def display_dashboard():
|
| 90 |
+
st.header("Dashboard")
|
| 91 |
+
|
| 92 |
+
# Fetch tickers
|
| 93 |
+
nifty50_tickers = fetch_nifty50_tickers()
|
| 94 |
+
large_cap_tickers = fetch_large_cap_tickers()
|
| 95 |
+
small_cap_tickers = fetch_small_cap_tickers()
|
| 96 |
+
|
| 97 |
+
# Get top gainers and losers
|
| 98 |
+
top_gainers_nifty50, top_losers_nifty50 = get_top_movers(nifty50_tickers)
|
| 99 |
+
top_gainers_large_cap, top_losers_large_cap = get_top_movers(large_cap_tickers)
|
| 100 |
+
top_gainers_small_cap, top_losers_small_cap = get_top_movers(small_cap_tickers)
|
| 101 |
+
|
| 102 |
+
# Create columns for tables
|
| 103 |
+
col1, col2, col3, col4 = st.columns(4)
|
| 104 |
+
|
| 105 |
+
with col1:
|
| 106 |
+
st.write("### Nifty 50 Top Gainers")
|
| 107 |
+
if top_gainers_nifty50:
|
| 108 |
+
df_gainers_nifty50 = pd.DataFrame(top_gainers_nifty50, columns=['Ticker', 'Percentage Change'])
|
| 109 |
+
st.dataframe(format_df(df_gainers_nifty50))
|
| 110 |
+
|
| 111 |
+
with col2:
|
| 112 |
+
st.write("### Nifty 50 Top Losers")
|
| 113 |
+
if top_losers_nifty50:
|
| 114 |
+
df_losers_nifty50 = pd.DataFrame(top_losers_nifty50, columns=['Ticker', 'Percentage Change'])
|
| 115 |
+
st.dataframe(format_df(df_losers_nifty50))
|
| 116 |
+
|
| 117 |
+
with col3:
|
| 118 |
+
st.write("### Large Cap Top Gainers")
|
| 119 |
+
if top_gainers_large_cap:
|
| 120 |
+
df_gainers_large_cap = pd.DataFrame(top_gainers_large_cap, columns=['Ticker', 'Percentage Change'])
|
| 121 |
+
st.dataframe(format_df(df_gainers_large_cap))
|
| 122 |
+
|
| 123 |
+
with col4:
|
| 124 |
+
st.write("### Large Cap Top Losers")
|
| 125 |
+
if top_losers_large_cap:
|
| 126 |
+
df_losers_large_cap = pd.DataFrame(top_losers_large_cap, columns=['Ticker', 'Percentage Change'])
|
| 127 |
+
st.dataframe(format_df(df_losers_large_cap))
|
| 128 |
+
|
| 129 |
+
# Fetch and display stock profile
|
| 130 |
+
def fetch_stock_profile(ticker):
|
| 131 |
+
try:
|
| 132 |
+
stock = yf.Ticker(ticker)
|
| 133 |
+
info = stock.info
|
| 134 |
+
|
| 135 |
+
profile = {
|
| 136 |
+
"Name": info.get('shortName', 'N/A'),
|
| 137 |
+
"Current Price": f"₹ {info.get('currentPrice', 'N/A')}",
|
| 138 |
+
"Market Cap": f"₹ {info.get('marketCap', 'N/A') / 1e7:.2f} Cr.",
|
| 139 |
+
"P/E Ratio": info.get('forwardEps', 'N/A'),
|
| 140 |
+
"Book Value": info.get('bookValue', 'N/A'),
|
| 141 |
+
"Dividend Yield": info.get('dividendYield', 'N/A'),
|
| 142 |
+
"ROCE": info.get('returnOnCapitalEmployed', 'N/A'),
|
| 143 |
+
"ROE": info.get('returnOnEquity', 'N/A'),
|
| 144 |
+
"Face Value": info.get('faceValue', 'N/A')
|
| 145 |
+
}
|
| 146 |
+
return profile
|
| 147 |
+
except Exception as e:
|
| 148 |
+
st.error(f"Error fetching profile for {ticker}: {e}")
|
| 149 |
+
return {}
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
# Display stock profile as a table
|
| 155 |
+
def display_profile(profile):
|
| 156 |
+
st.subheader("Stock Profile")
|
| 157 |
+
profile_df = pd.DataFrame([profile])
|
| 158 |
+
st.table(profile_df)
|
| 159 |
+
|
| 160 |
+
# Fetch and display quarterly results
|
| 161 |
+
def display_quarterly_results(ticker):
|
| 162 |
+
st.subheader("Quarterly Results Summary")
|
| 163 |
+
try:
|
| 164 |
+
stock = yf.Ticker(ticker)
|
| 165 |
+
financials = stock.quarterly_financials.T
|
| 166 |
+
if not financials.empty:
|
| 167 |
+
results = {
|
| 168 |
+
'Sales': financials['Total Revenue'].iloc[-1] if 'Total Revenue' in financials.columns else 'N/A',
|
| 169 |
+
'Operating Profit Margin': financials['Operating Income'].iloc[-1] if 'Operating Income' in financials.columns else 'N/A',
|
| 170 |
+
'Net Profit': financials['Net Income'].iloc[-1] if 'Net Income' in financials.columns else 'N/A'
|
| 171 |
+
}
|
| 172 |
+
results_df = pd.DataFrame([results])
|
| 173 |
+
st.table(results_df)
|
| 174 |
+
else:
|
| 175 |
+
st.write("No quarterly results available.")
|
| 176 |
+
except Exception as e:
|
| 177 |
+
st.write(f"Error fetching quarterly results: {e}")
|
| 178 |
+
|
| 179 |
+
# Fetch and display shareholding pattern
|
| 180 |
+
def display_shareholding_pattern(ticker):
|
| 181 |
+
st.subheader("Shareholding Pattern")
|
| 182 |
+
|
| 183 |
+
# Placeholder values; replace with actual data source or API call
|
| 184 |
+
data = {
|
| 185 |
+
'Category': ['Promoters', 'FIIs (Foreign Institutional Investors)', 'DIIs (Domestic Institutional Investors)', 'Public'],
|
| 186 |
+
'Holding (%)': [45.0, 20.0, 15.0, 20.0]
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
df = pd.DataFrame(data)
|
| 190 |
+
st.table(df)
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
def display_financial_ratios(ticker):
|
| 194 |
+
st.subheader("Financial Ratios")
|
| 195 |
+
stock = yf.Ticker(ticker)
|
| 196 |
+
|
| 197 |
+
try:
|
| 198 |
+
# Placeholder values, calculate actual values based on your requirements
|
| 199 |
+
ratios = {
|
| 200 |
+
'Debtor Days': 73,
|
| 201 |
+
'Working Capital Days': 194,
|
| 202 |
+
'Cash Conversion Cycle': 51
|
| 203 |
+
}
|
| 204 |
+
ratios_df = pd.DataFrame([ratios])
|
| 205 |
+
st.table(ratios_df)
|
| 206 |
+
except Exception as e:
|
| 207 |
+
st.write("Error fetching financial ratios:", e)
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
# Main application
|
| 226 |
+
# def main():
|
| 227 |
+
# st.title("Stock Analysis Dashboard")
|
| 228 |
+
|
| 229 |
+
# # Select ticker input
|
| 230 |
+
# ticker = st.text_input("Enter Stock Ticker (e.g., TATAMOTORS.NS)")
|
| 231 |
+
|
| 232 |
+
# if ticker:
|
| 233 |
+
# profile = fetch_stock_profile(ticker)
|
| 234 |
+
# if profile:
|
| 235 |
+
# display_profile(profile)
|
| 236 |
+
|
| 237 |
+
# display_quarterly_results(ticker)
|
| 238 |
+
# display_shareholding_pattern(ticker)
|
| 239 |
+
|
| 240 |
+
# # Show dashboard
|
| 241 |
+
# if st.button("Show Dashboard"):
|
| 242 |
+
# display_dashboard()
|
| 243 |
+
|
| 244 |
+
# if __name__ == "__main__":
|
| 245 |
+
# main()
|
| 246 |
+
|
| 247 |
+
|