Spaces:
Running
Running
| import os | |
| import argparse | |
| import json | |
| from gguf import GGUFReader | |
| from typing import List, Dict, Any | |
| def extract_and_save_tokenizer_files(gguf_path: str, output_dir: str) -> None: | |
| """ | |
| Extracts tokenizer metadata from a GGUF file and saves it as | |
| tokenizer.json, tokenizer_config.json, and special_tokens_map.json. | |
| """ | |
| print(f"Loading GGUF file for tokenizer metadata: {gguf_path}") | |
| reader = GGUFReader(gguf_path, 'r') | |
| # --- Extract raw metadata from GGUF --- | |
| try: | |
| vocab_list_raw = reader.get_field("tokenizer.ggml.tokens").parts[0] | |
| merges_list = reader.get_field("tokenizer.ggml.merges").parts[0] | |
| bos_token_id = int(reader.get_field("tokenizer.ggml.bos_token_id").parts[0]) | |
| eos_token_id = int(reader.get_field("tokenizer.ggml.eos_token_id").parts[0]) | |
| unk_token_id = int(reader.get_field("tokenizer.ggml.unknown_token_id").parts[0]) | |
| padding_token_id = int(reader.get_field("tokenizer.ggml.padding_token_id").parts[0]) | |
| model_max_length = int(reader.get_field("llama.context_length").parts[0]) | |
| # Optional: chat template | |
| chat_template = None | |
| try: | |
| chat_template = reader.get_field("tokenizer.chat_template").parts[0] | |
| except KeyError: | |
| pass # Chat template might not always be present | |
| # Convert raw vocab bytes to strings | |
| vocab_list = [token.decode('utf-8', errors='ignore') for token in vocab_list_raw] | |
| except Exception as e: | |
| print(f"Fatal Error: Could not extract essential tokenizer metadata from GGUF. Error: {e}") | |
| return | |
| # --- 1. Create tokenizer.json --- | |
| try: | |
| # The vocab for tokenizer.json needs to be a dict of {token_string: id} | |
| vocab_dict = {token: i for i, token in enumerate(vocab_list)} | |
| tokenizer_json_data = { | |
| "version": "1.0", | |
| "truncation": None, | |
| "padding": None, | |
| "added_tokens": [], # GGUF doesn't typically store this separately | |
| "normalizer": { | |
| "type": "Sequence", | |
| "normalizers": [ | |
| {"type": "NFC"}, | |
| {"type": "Replace", "pattern": " ", "content": " "}, # Example, adjust if needed | |
| ] | |
| }, | |
| "pre_tokenizer": { | |
| "type": "ByteLevel", # Common for BPE models like GPT2/Llama | |
| "add_prefix_space": False, # Based on tokenizer.ggml.add_space_prefix = 0 | |
| "splits_by_unicode_script": False, | |
| "trim_offsets": True | |
| }, | |
| "post_processor": { | |
| "type": "ByteLevel", | |
| "truncation": None, | |
| "padding": None, | |
| "add_prefix_space": False, | |
| "trim_offsets": True | |
| }, | |
| "decoder": { | |
| "type": "ByteLevel", | |
| "add_prefix_space": False, | |
| "trim_offsets": True | |
| }, | |
| "model": { | |
| "type": "BPE", | |
| "vocab": vocab_dict, | |
| "merges": merges_list, | |
| "dropout": None, | |
| "unk_token": vocab_list[unk_token_id] if 0 <= unk_token_id < len(vocab_list) else "<unk>" | |
| } | |
| } | |
| tokenizer_json_path = os.path.join(output_dir, "tokenizer.json") | |
| with open(tokenizer_json_path, 'w', encoding='utf-8') as f: | |
| json.dump(tokenizer_json_data, f, indent=None, separators=(',', ':')) # Compact format | |
| print(f"Created tokenizer.json at {tokenizer_json_path}") | |
| except Exception as e: | |
| print(f"Warning: Could not create tokenizer.json. Error: {e}") | |
| # --- 2. Create tokenizer_config.json --- | |
| try: | |
| tokenizer_config_data = { | |
| "model_max_length": model_max_length, | |
| "padding_side": "left", # Common default for causal models | |
| "tokenizer_class": "LlamaTokenizer", # Mistral uses LlamaTokenizer | |
| "clean_up_tokenization_spaces": False, | |
| "add_bos_token": bool(reader.get_field("tokenizer.ggml.add_bos_token").parts[0]), | |
| "add_eos_token": bool(reader.get_field("tokenizer.ggml.add_eos_token").parts[0]), | |
| } | |
| if chat_template: | |
| tokenizer_config_data["chat_template"] = chat_template | |
| tokenizer_config_path = os.path.join(output_dir, "tokenizer_config.json") | |
| with open(tokenizer_config_path, 'w', encoding='utf-8') as f: | |
| json.dump(tokenizer_config_data, f, indent=2) | |
| print(f"Created tokenizer_config.json at {tokenizer_config_path}") | |
| except Exception as e: | |
| print(f"Warning: Could not create tokenizer_config.json. Error: {e}") | |
| # --- 3. Create special_tokens_map.json --- | |
| try: | |
| special_tokens_map_data = {} | |
| def get_token_string(token_id, default_str): | |
| if 0 <= token_id < len(vocab_list): | |
| return vocab_list[token_id] | |
| return default_str | |
| special_tokens_map_data["bos_token"] = get_token_string(bos_token_id, "<|begin_of_text|>") | |
| special_tokens_map_data["eos_token"] = get_token_string(eos_token_id, "<|end_of_text|>") | |
| special_tokens_map_data["unk_token"] = get_token_string(unk_token_id, "<unk>") | |
| special_tokens_map_data["pad_token"] = get_token_string(padding_token_id, "<pad>") | |
| special_tokens_map_path = os.path.join(output_dir, "special_tokens_map.json") | |
| with open(special_tokens_map_path, 'w', encoding='utf-8') as f: | |
| json.dump(special_tokens_map_data, f, indent=2) | |
| print(f"Created special_tokens_map.json at {special_tokens_map_path}") | |
| except Exception as e: | |
| print(f"Warning: Could not create special_tokens_map.json. Error: {e}") | |
| def main(): | |
| parser = argparse.ArgumentParser( | |
| description="Extracts tokenizer metadata from a GGUF file and saves it as Hugging Face tokenizer files." | |
| ) | |
| parser.add_argument("--gguf-file", required=True, help="Path to the original GGUF file to read metadata from.") | |
| parser.add_argument("--output-dir", required=True, help="Path to the directory where the tokenizer files will be saved.") | |
| args = parser.parse_args() | |
| if not os.path.isfile(args.gguf_file): | |
| print(f"Error: GGUF file not found at {args.gguf_file}") | |
| return | |
| if not os.path.isdir(args.output_dir): | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| print(f"Created output directory: {args.output_dir}") | |
| extract_and_save_tokenizer_files(args.gguf_file, args.output_dir) | |
| print("\nTokenizer file generation complete.") | |
| if __name__ == "__main__": | |
| main() |