model_tools / tokenizer_ripper_v1.py
Naphula's picture
Upload tokenizer_ripper_v1.py
d45a30f verified
raw
history blame
6.68 kB
import os
import argparse
import json
from gguf import GGUFReader
from typing import List, Dict, Any
def extract_and_save_tokenizer_files(gguf_path: str, output_dir: str) -> None:
"""
Extracts tokenizer metadata from a GGUF file and saves it as
tokenizer.json, tokenizer_config.json, and special_tokens_map.json.
"""
print(f"Loading GGUF file for tokenizer metadata: {gguf_path}")
reader = GGUFReader(gguf_path, 'r')
# --- Extract raw metadata from GGUF ---
try:
vocab_list_raw = reader.get_field("tokenizer.ggml.tokens").parts[0]
merges_list = reader.get_field("tokenizer.ggml.merges").parts[0]
bos_token_id = int(reader.get_field("tokenizer.ggml.bos_token_id").parts[0])
eos_token_id = int(reader.get_field("tokenizer.ggml.eos_token_id").parts[0])
unk_token_id = int(reader.get_field("tokenizer.ggml.unknown_token_id").parts[0])
padding_token_id = int(reader.get_field("tokenizer.ggml.padding_token_id").parts[0])
model_max_length = int(reader.get_field("llama.context_length").parts[0])
# Optional: chat template
chat_template = None
try:
chat_template = reader.get_field("tokenizer.chat_template").parts[0]
except KeyError:
pass # Chat template might not always be present
# Convert raw vocab bytes to strings
vocab_list = [token.decode('utf-8', errors='ignore') for token in vocab_list_raw]
except Exception as e:
print(f"Fatal Error: Could not extract essential tokenizer metadata from GGUF. Error: {e}")
return
# --- 1. Create tokenizer.json ---
try:
# The vocab for tokenizer.json needs to be a dict of {token_string: id}
vocab_dict = {token: i for i, token in enumerate(vocab_list)}
tokenizer_json_data = {
"version": "1.0",
"truncation": None,
"padding": None,
"added_tokens": [], # GGUF doesn't typically store this separately
"normalizer": {
"type": "Sequence",
"normalizers": [
{"type": "NFC"},
{"type": "Replace", "pattern": " ", "content": " "}, # Example, adjust if needed
]
},
"pre_tokenizer": {
"type": "ByteLevel", # Common for BPE models like GPT2/Llama
"add_prefix_space": False, # Based on tokenizer.ggml.add_space_prefix = 0
"splits_by_unicode_script": False,
"trim_offsets": True
},
"post_processor": {
"type": "ByteLevel",
"truncation": None,
"padding": None,
"add_prefix_space": False,
"trim_offsets": True
},
"decoder": {
"type": "ByteLevel",
"add_prefix_space": False,
"trim_offsets": True
},
"model": {
"type": "BPE",
"vocab": vocab_dict,
"merges": merges_list,
"dropout": None,
"unk_token": vocab_list[unk_token_id] if 0 <= unk_token_id < len(vocab_list) else "<unk>"
}
}
tokenizer_json_path = os.path.join(output_dir, "tokenizer.json")
with open(tokenizer_json_path, 'w', encoding='utf-8') as f:
json.dump(tokenizer_json_data, f, indent=None, separators=(',', ':')) # Compact format
print(f"Created tokenizer.json at {tokenizer_json_path}")
except Exception as e:
print(f"Warning: Could not create tokenizer.json. Error: {e}")
# --- 2. Create tokenizer_config.json ---
try:
tokenizer_config_data = {
"model_max_length": model_max_length,
"padding_side": "left", # Common default for causal models
"tokenizer_class": "LlamaTokenizer", # Mistral uses LlamaTokenizer
"clean_up_tokenization_spaces": False,
"add_bos_token": bool(reader.get_field("tokenizer.ggml.add_bos_token").parts[0]),
"add_eos_token": bool(reader.get_field("tokenizer.ggml.add_eos_token").parts[0]),
}
if chat_template:
tokenizer_config_data["chat_template"] = chat_template
tokenizer_config_path = os.path.join(output_dir, "tokenizer_config.json")
with open(tokenizer_config_path, 'w', encoding='utf-8') as f:
json.dump(tokenizer_config_data, f, indent=2)
print(f"Created tokenizer_config.json at {tokenizer_config_path}")
except Exception as e:
print(f"Warning: Could not create tokenizer_config.json. Error: {e}")
# --- 3. Create special_tokens_map.json ---
try:
special_tokens_map_data = {}
def get_token_string(token_id, default_str):
if 0 <= token_id < len(vocab_list):
return vocab_list[token_id]
return default_str
special_tokens_map_data["bos_token"] = get_token_string(bos_token_id, "<|begin_of_text|>")
special_tokens_map_data["eos_token"] = get_token_string(eos_token_id, "<|end_of_text|>")
special_tokens_map_data["unk_token"] = get_token_string(unk_token_id, "<unk>")
special_tokens_map_data["pad_token"] = get_token_string(padding_token_id, "<pad>")
special_tokens_map_path = os.path.join(output_dir, "special_tokens_map.json")
with open(special_tokens_map_path, 'w', encoding='utf-8') as f:
json.dump(special_tokens_map_data, f, indent=2)
print(f"Created special_tokens_map.json at {special_tokens_map_path}")
except Exception as e:
print(f"Warning: Could not create special_tokens_map.json. Error: {e}")
def main():
parser = argparse.ArgumentParser(
description="Extracts tokenizer metadata from a GGUF file and saves it as Hugging Face tokenizer files."
)
parser.add_argument("--gguf-file", required=True, help="Path to the original GGUF file to read metadata from.")
parser.add_argument("--output-dir", required=True, help="Path to the directory where the tokenizer files will be saved.")
args = parser.parse_args()
if not os.path.isfile(args.gguf_file):
print(f"Error: GGUF file not found at {args.gguf_file}")
return
if not os.path.isdir(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
print(f"Created output directory: {args.output_dir}")
extract_and_save_tokenizer_files(args.gguf_file, args.output_dir)
print("\nTokenizer file generation complete.")
if __name__ == "__main__":
main()