Spaces:
Running
Running
Upload fp32_to_fp16.py
Browse files- fp32_to_fp16.py +40 -0
fp32_to_fp16.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
# --- YOU MUST UPDATE THESE TWO PATHS ---
|
| 6 |
+
# Path to the directory where your FP32 model is stored locally
|
| 7 |
+
input_dir = "A:\LLM\.cache\huggingface\hub\models--wzhouad--gemma-2-9b-it-WPO-HB"
|
| 8 |
+
|
| 9 |
+
# Path to the directory where the converted FP16 model will be saved
|
| 10 |
+
output_dir = "A:\LLM\.cache\huggingface\hub\models--wzhouad--gemma-2-9b-it-WPO-HB_FP16"
|
| 11 |
+
# -------------------------------------
|
| 12 |
+
|
| 13 |
+
# Make sure the output directory exists
|
| 14 |
+
if not os.path.exists(output_dir):
|
| 15 |
+
os.makedirs(output_dir)
|
| 16 |
+
|
| 17 |
+
# Load the tokenizer from the local path
|
| 18 |
+
print(f"Loading tokenizer from {input_dir}...")
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(input_dir)
|
| 20 |
+
|
| 21 |
+
# Load the model in FP32 from the local path
|
| 22 |
+
print(f"Loading FP32 model from {input_dir}...")
|
| 23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
+
input_dir,
|
| 25 |
+
torch_dtype=torch.float32,
|
| 26 |
+
device_map="cpu"
|
| 27 |
+
# device_map="auto" # use this if you have enough GPU VRAM
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Convert the model to FP16 and save it to the new local directory
|
| 31 |
+
print("Converting model to FP16 and saving to disk...")
|
| 32 |
+
model.half().save_pretrained(
|
| 33 |
+
output_dir,
|
| 34 |
+
safe_serialization=True,
|
| 35 |
+
max_shard_size="5GB"
|
| 36 |
+
)
|
| 37 |
+
tokenizer.save_pretrained(output_dir)
|
| 38 |
+
|
| 39 |
+
print(f"Model successfully converted and saved to {output_dir}")
|
| 40 |
+
print("You can now use this new FP16 model in your mergekit config.yaml.")
|