import torch from safetensors.torch import save_file, load_file import os import json import glob from collections import OrderedDict def fix_vocab_size(model_dir, output_dir, new_vocab_size=131072): """ Resizes the vocabulary-dependent tensors of a sharded model to a new size. Args: model_dir (str): The directory of the model to fix. output_dir (str): The directory where the fixed model will be saved. new_vocab_size (int): The target vocabulary size. """ try: if not os.path.exists(output_dir): os.makedirs(output_dir) print(f"Created output directory: {output_dir}") # --- Step 1: Find all safetensor shards --- search_pattern = os.path.join(model_dir, '*.safetensors') shard_paths = sorted(glob.glob(search_pattern)) if not shard_paths: print(f"Error: No '.safetensors' files found in {model_dir}") return print(f"Found {len(shard_paths)} shards to process.") # --- Step 2: Identify which shards contain the vocab tensors --- vocab_tensor_keys = ["model.embed_tokens.weight", "lm_head.weight"] shards_to_modify = {} # {filename: {key: tensor}} for shard_path in shard_paths: with open(shard_path, "rb") as f: data = f.read() header_size = int.from_bytes(data[:8], 'little') header_str = data[8:8+header_size].decode('utf-8') header = json.loads(header_str) for key in header.keys(): if key in vocab_tensor_keys: filename = os.path.basename(shard_path) if filename not in shards_to_modify: shards_to_modify[filename] = {} # Load only the specific tensor shards_to_modify[filename][key] = load_file(shard_path)[key] print(f"Found '{key}' in shard: {filename}") if not shards_to_modify: print("Error: Could not find 'embed_tokens' or 'lm_head' tensors in any shard.") return # --- Step 3: Process all shards, modifying the ones with vocab tensors --- for shard_path in shard_paths: filename = os.path.basename(shard_path) output_shard_path = os.path.join(output_dir, filename) # Load all tensors from the current shard tensors = load_file(shard_path) if filename in shards_to_modify: print(f"Resizing tensors in {filename}...") for key, tensor in shards_to_modify[filename].items(): original_size = tensor.shape[0] print(f" - Resizing '{key}' from {original_size} to {new_vocab_size}") # Trim the tensor to the new vocabulary size resized_tensor = tensor[:new_vocab_size, :] tensors[key] = resized_tensor # Replace the tensor in the loaded dict # Save the (potentially modified) tensors to the new location save_file(tensors, output_shard_path) print(f"Saved new shard: {output_shard_path}") # --- Step 4: Modify and save the config.json --- config_path = os.path.join(model_dir, 'config.json') new_config_path = os.path.join(output_dir, 'config.json') if os.path.exists(config_path): with open(config_path, 'r') as f: config = json.load(f) print(f"\nUpdating config.json: 'vocab_size' from {config.get('vocab_size')} to {new_vocab_size}") config['vocab_size'] = new_vocab_size with open(new_config_path, 'w') as f: json.dump(config, f, indent=2) print(f"Saved new config.json to {new_config_path}") else: print("Warning: config.json not found. Please create it manually.") # --- Step 5: Copy other essential files --- for filename in os.listdir(model_dir): if filename.endswith(('.json', '.py', '.md', '.txt')) and filename != 'config.json': if not os.path.exists(os.path.join(output_dir, filename)): import shutil shutil.copy2(os.path.join(model_dir, filename), output_dir) print(f"Copied {filename} to output directory.") print("\nVocabulary resizing complete. The model is now ready for merging.") except Exception as e: print(f"An error occurred: {e}") if __name__ == "__main__": # --- Configuration --- # Directory of the original DeepHermes-24B model input_model_directory = r"path/to/your/DeepHermes-24B" # Directory to save the fixed, merge-ready model output_model_directory = r"path/to/your/DeepHermes-24B/fixed" # The standard vocab size you are targeting for the merge target_vocab_size = 131072 # --- Run the script --- fix_vocab_size(input_model_directory, output_model_directory, target_vocab_size)