Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,11 +4,63 @@ import os
|
|
| 4 |
import string
|
| 5 |
import re
|
| 6 |
import torch
|
| 7 |
-
from transformers import pipeline
|
| 8 |
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
| 9 |
import fasttext
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
model_path = hf_hub_download(repo_id="cis-lmu/glotlid", filename="model.bin")
|
| 14 |
identification_model = fasttext.load_model(model_path)
|
|
@@ -172,20 +224,33 @@ def print_s(source_lang, target_lang, text0):
|
|
| 172 |
demo = gr.Blocks()
|
| 173 |
|
| 174 |
with demo:
|
| 175 |
-
gr.Markdown("Speech analyzer")
|
| 176 |
-
audio = gr.Audio(type="filepath", label = "Upload a file")
|
| 177 |
text0 = gr.Textbox()
|
| 178 |
text = gr.Textbox()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
source_lang = gr.Dropdown(label="Source lang", choices=list(lang_id.keys()), value=list(lang_id.keys())[0])
|
| 180 |
target_lang = gr.Dropdown(label="target lang", choices=list(lang_id.keys()), value=list(lang_id.keys())[0])
|
| 181 |
|
| 182 |
#gr.Examples(examples = list(lang_id.keys()),
|
| 183 |
# inputs=[
|
| 184 |
# source_lang])
|
| 185 |
-
b1 = gr.Button("convert to text")
|
| 186 |
b3 = gr.Button("translate")
|
| 187 |
b3.click(translation_text, inputs = [source_lang, target_lang, text0], outputs = text)
|
| 188 |
-
b1.click(audio_a_text, inputs=audio, outputs=text)
|
| 189 |
|
| 190 |
b2 = gr.Button("Classification of language")
|
| 191 |
b2.click(lang_ident,inputs = text0, outputs=text)
|
|
|
|
| 4 |
import string
|
| 5 |
import re
|
| 6 |
import torch
|
| 7 |
+
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig
|
| 8 |
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
|
| 9 |
import fasttext
|
| 10 |
from huggingface_hub import hf_hub_download
|
| 11 |
|
| 12 |
+
summarization_model_names = [
|
| 13 |
+
"google/bigbird-pegasus-large-arxiv",
|
| 14 |
+
"facebook/bart-large-cnn",
|
| 15 |
+
"google/t5-v1_1-large",
|
| 16 |
+
"sshleifer/distilbart-cnn-12-6",
|
| 17 |
+
"allenai/led-base-16384",
|
| 18 |
+
"google/pegasus-xsum",
|
| 19 |
+
"togethercomputer/LLaMA-2-7B-32K"
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
# Placeholder for the summarizer pipeline, tokenizer, and maximum tokens
|
| 23 |
+
summarizer = None
|
| 24 |
+
tokenizer = None
|
| 25 |
+
max_tokens = None
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# Function to load the selected model
|
| 29 |
+
def load_summarization_model(model_name):
|
| 30 |
+
global summarizer, tokenizer, max_tokens
|
| 31 |
+
try:
|
| 32 |
+
summarizer = pipeline("summarization", model=model_name, torch_dtype=torch.bfloat16)
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 34 |
+
config = AutoConfig.from_pretrained(model_name)
|
| 35 |
+
|
| 36 |
+
if max_tokens = config.max_position_embeddings
|
| 37 |
+
elif hasattr(config, 'n_positions'):
|
| 38 |
+
max_tokens = config.n_positions
|
| 39 |
+
elif hasattr(config, 'd_model'):
|
| 40 |
+
max_tokens = config.d_model # for T5 models, d_model is a rough proxy
|
| 41 |
+
else:
|
| 42 |
+
max_tokens = "Unknown"
|
| 43 |
+
|
| 44 |
+
return f"Model {model_name} loaded successfully! Max tokens: {max_tokens}"
|
| 45 |
+
except Exception as e:
|
| 46 |
+
return f"Failed to load model {model_name}. Error: {str(e)}"
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def summarize_text(input, min_length, max_length):
|
| 50 |
+
if summarizer is None:
|
| 51 |
+
return "No model loaded!"
|
| 52 |
+
|
| 53 |
+
input_tokens = tokenizer.encode(input, return_tensors="pt")
|
| 54 |
+
num_tokens = input_tokens.shape[1]
|
| 55 |
+
if num_tokens > max_tokens:
|
| 56 |
+
return f"Error: The input text has {num_tokens} tokens, which exceeds the maximum allowed {max_tokens} tokens. Please enter shorter text."
|
| 57 |
+
|
| 58 |
+
min_summary_length = int(num_tokens * (min_length / 100))
|
| 59 |
+
max_summary_length = int(num_tokens * (max_length / 100))
|
| 60 |
+
|
| 61 |
+
output = summarizer(input, min_length=min_summary_length, max_length=max_summary_length)
|
| 62 |
+
return output[0]['summary_text']
|
| 63 |
+
|
| 64 |
|
| 65 |
model_path = hf_hub_download(repo_id="cis-lmu/glotlid", filename="model.bin")
|
| 66 |
identification_model = fasttext.load_model(model_path)
|
|
|
|
| 224 |
demo = gr.Blocks()
|
| 225 |
|
| 226 |
with demo:
|
|
|
|
|
|
|
| 227 |
text0 = gr.Textbox()
|
| 228 |
text = gr.Textbox()
|
| 229 |
+
#gr.Markdown("Speech analyzer")
|
| 230 |
+
#audio = gr.Audio(type="filepath", label = "Upload a file")
|
| 231 |
+
model_dropdown = gr.Dropdown(choices=model_names, label="Choose a model", value="sshleifer/distilbart-cnn-12-6")
|
| 232 |
+
load_message = gr.Textbox(label="Load Status", interactive=False)
|
| 233 |
+
b1 = gr.Button("Load Model")
|
| 234 |
+
min_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Minimum Summary Length (%)", value=10)
|
| 235 |
+
max_length_slider = gr.Slider(minimum=0, maximum=100, step=1, label="Maximum Summary Length (%)", value=20)
|
| 236 |
+
|
| 237 |
+
summarize_button = gr.Button("Summarize Text")
|
| 238 |
+
|
| 239 |
+
b1.click(fn=load_model, inputs=model_dropdown, outputs=load_message)
|
| 240 |
+
summarize_button.click(fn=summarize_text, inputs=[text0, min_length_slider, max_length_slider],
|
| 241 |
+
outputs=text)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
source_lang = gr.Dropdown(label="Source lang", choices=list(lang_id.keys()), value=list(lang_id.keys())[0])
|
| 245 |
target_lang = gr.Dropdown(label="target lang", choices=list(lang_id.keys()), value=list(lang_id.keys())[0])
|
| 246 |
|
| 247 |
#gr.Examples(examples = list(lang_id.keys()),
|
| 248 |
# inputs=[
|
| 249 |
# source_lang])
|
| 250 |
+
#b1 = gr.Button("convert to text")
|
| 251 |
b3 = gr.Button("translate")
|
| 252 |
b3.click(translation_text, inputs = [source_lang, target_lang, text0], outputs = text)
|
| 253 |
+
#b1.click(audio_a_text, inputs=audio, outputs=text)
|
| 254 |
|
| 255 |
b2 = gr.Button("Classification of language")
|
| 256 |
b2.click(lang_ident,inputs = text0, outputs=text)
|