Spaces:
Runtime error
Runtime error
| import os | |
| import numpy as np | |
| import openai | |
| import pandas as pd | |
| import tiktoken | |
| import gradio as gr | |
| COMPLETIONS_MODEL = "text-davinci-003" | |
| EMBEDDING_MODEL = "text-embedding-ada-002" | |
| openai.api_key = os.getenv("OPENAI_API_KEY") | |
| # 1) Preprocess the document library | |
| df = pd.read_csv("informacion_neo_tokenizado.csv") | |
| df = df.set_index(["title", "heading"]) | |
| def get_embedding(text: str, model: str=EMBEDDING_MODEL) -> list[float]: | |
| result = openai.Embedding.create( | |
| model=model, | |
| input=text | |
| ) | |
| return result["data"][0]["embedding"] | |
| # uncomment the below line to caculate embeddings from scratch. ======== | |
| def compute_doc_embeddings(df: pd.DataFrame) -> dict[tuple[str, str], list[float]]: | |
| return { | |
| idx: get_embedding(r.content) for idx, r in df.iterrows() | |
| } | |
| document_embeddings = compute_doc_embeddings(df) | |
| # 2) Find the most similar document embeddings to the question embedding | |
| def vector_similarity(x: list[float], y: list[float]) -> float: | |
| """ | |
| Returns the similarity between two vectors. | |
| Because OpenAI Embeddings are normalized to length 1, the cosine similarity is the same as the dot product. | |
| """ | |
| return np.dot(np.array(x), np.array(y)) | |
| def order_document_sections_by_query_similarity(query: str, contexts: dict[(str, str), np.array]) -> list[(float, (str, str))]: | |
| """ | |
| Find the query embedding for the supplied query, and compare it against all of the pre-calculated document embeddings | |
| to find the most relevant sections. | |
| Return the list of document sections, sorted by relevance in descending order. | |
| """ | |
| query_embedding = get_embedding(query) | |
| document_similarities = sorted([ | |
| (vector_similarity(query_embedding, doc_embedding), doc_index) for doc_index, doc_embedding in contexts.items() | |
| ], reverse=True) | |
| return document_similarities | |
| # 3) Add the most relevant document sections to the query prompt | |
| MAX_SECTION_LEN = 500 | |
| SEPARATOR = "\n* " | |
| ENCODING = "gpt2" # encoding for text-davinci-003 | |
| encoding = tiktoken.get_encoding(ENCODING) | |
| separator_len = len(encoding.encode(SEPARATOR)) | |
| def construct_prompt(question: str, context_embeddings: dict, df: pd.DataFrame) -> str: | |
| """ | |
| Fetch relevant | |
| """ | |
| most_relevant_document_sections = order_document_sections_by_query_similarity(question, context_embeddings) | |
| chosen_sections = [] | |
| chosen_sections_len = 0 | |
| chosen_sections_indexes = [] | |
| for _, section_index in most_relevant_document_sections: | |
| # Add contexts until we run out of space. | |
| document_section = df.loc[section_index] | |
| chosen_sections_len += document_section.tokens + separator_len | |
| if chosen_sections_len > MAX_SECTION_LEN: | |
| break | |
| chosen_sections.append(SEPARATOR + document_section.content.replace("\n", " ")) | |
| chosen_sections_indexes.append(str(section_index)) | |
| header = """Answer the question as truthfully as possible using the provided context, and if the answer is not contained within the text below, say "I don't know."\n\nContext:\n""" | |
| return header + "".join(chosen_sections) + "\n\n Q: " + question + "\n A:" | |
| prompt = construct_prompt( | |
| "Who won the 2020 Summer Olympics men's high jump?", | |
| document_embeddings, | |
| df | |
| ) | |
| # 4) Answer the user's question based on the context. | |
| COMPLETIONS_API_PARAMS = { | |
| # We use temperature of 0.0 because it gives the most predictable, factual answer. | |
| "temperature": 0.0, | |
| "max_tokens": 300, | |
| "model": COMPLETIONS_MODEL, | |
| } | |
| def answer_query_with_context( | |
| query: str, | |
| df: pd.DataFrame, | |
| document_embeddings: dict[(str, str), np.array] | |
| ) -> str: | |
| prompt = construct_prompt( | |
| query, | |
| document_embeddings, | |
| df | |
| ) | |
| response = openai.Completion.create( | |
| prompt=prompt, | |
| **COMPLETIONS_API_PARAMS | |
| ) | |
| return response["choices"][0]["text"].strip(" \n") | |
| def answer_question(query): | |
| return answer_query_with_context(query, df, document_embeddings) | |
| iface = gr.Interface(fn=answer_question, inputs="text", outputs="text") | |
| iface.launch() |