Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -66,28 +66,34 @@ def load_and_concat_data():
|
|
| 66 |
try:
|
| 67 |
file_content = api.hf_hub_download(repo_id=f"{HF_USERNAME}/{DATASET_NAME}", filename=file, repo_type="dataset", token=HF_TOKEN)
|
| 68 |
|
| 69 |
-
# Use CSV
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
# Convert to pandas DataFrame
|
| 81 |
-
df = table.to_pandas()
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
for col in required_columns:
|
| 86 |
-
if col not in df.columns:
|
| 87 |
-
df[col] = pd.NA
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
df = df[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
all_data.append(df)
|
| 93 |
except Exception as e:
|
|
@@ -98,24 +104,9 @@ def load_and_concat_data():
|
|
| 98 |
return pd.DataFrame()
|
| 99 |
|
| 100 |
concatenated_df = pd.concat(all_data, ignore_index=True)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
concatenated_df = concatenated_df.dropna(subset=['date_posted'])
|
| 105 |
-
concatenated_df = concatenated_df[concatenated_df['date_posted'].dt.year == 2024]
|
| 106 |
-
concatenated_df['title'] = concatenated_df['title'].str.lower()
|
| 107 |
-
concatenated_df['company'] = concatenated_df['company'].str.lower()
|
| 108 |
-
|
| 109 |
-
def clean_location(location):
|
| 110 |
-
if pd.isna(location):
|
| 111 |
-
return location
|
| 112 |
-
location = str(location).lower()
|
| 113 |
-
return re.sub(r',\s*(us|usa)$', '', location)
|
| 114 |
-
|
| 115 |
-
concatenated_df['location'] = concatenated_df['location'].apply(clean_location)
|
| 116 |
-
concatenated_df = concatenated_df.drop_duplicates()
|
| 117 |
-
|
| 118 |
-
return concatenated_df
|
| 119 |
|
| 120 |
@st.cache_data()
|
| 121 |
def get_unique_values(df):
|
|
|
|
| 66 |
try:
|
| 67 |
file_content = api.hf_hub_download(repo_id=f"{HF_USERNAME}/{DATASET_NAME}", filename=file, repo_type="dataset", token=HF_TOKEN)
|
| 68 |
|
| 69 |
+
# Use PyArrow's CSV reading capabilities
|
| 70 |
+
read_options = csv.ReadOptions(use_threads=True)
|
| 71 |
+
parse_options = csv.ParseOptions(delimiter=',') # Adjust delimiter if needed
|
| 72 |
+
convert_options = csv.ConvertOptions(
|
| 73 |
+
column_types={
|
| 74 |
+
'date_posted': pa.timestamp('s'),
|
| 75 |
+
'is_remote': pa.bool_()
|
| 76 |
+
},
|
| 77 |
+
strings_can_be_null=True
|
| 78 |
+
)
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
table = csv.read_csv(file_content, read_options=read_options, parse_options=parse_options, convert_options=convert_options)
|
| 81 |
+
df = table.to_pandas()
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
+
# Perform data cleaning and processing
|
| 84 |
+
df['date_posted'] = pd.to_datetime(df['date_posted'], errors='coerce')
|
| 85 |
+
df = df.dropna(subset=['date_posted'])
|
| 86 |
+
df = df[df['date_posted'].dt.year == 2024]
|
| 87 |
+
df['title'] = df['title'].str.lower()
|
| 88 |
+
df['company'] = df['company'].str.lower()
|
| 89 |
+
|
| 90 |
+
def clean_location(location):
|
| 91 |
+
if pd.isna(location):
|
| 92 |
+
return location
|
| 93 |
+
location = str(location).lower()
|
| 94 |
+
return re.sub(r',\s*(us|usa)$', '', location)
|
| 95 |
+
|
| 96 |
+
df['location'] = df['location'].apply(clean_location)
|
| 97 |
|
| 98 |
all_data.append(df)
|
| 99 |
except Exception as e:
|
|
|
|
| 104 |
return pd.DataFrame()
|
| 105 |
|
| 106 |
concatenated_df = pd.concat(all_data, ignore_index=True)
|
| 107 |
+
filtered_df = concatenated_df.drop_duplicates().reset_index(drop=True)
|
| 108 |
+
|
| 109 |
+
return filtered_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
@st.cache_data()
|
| 112 |
def get_unique_values(df):
|