Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,120 +1,195 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from jobspy import scrape_jobs
|
| 3 |
import pandas as pd
|
| 4 |
-
|
| 5 |
from huggingface_hub import HfApi
|
| 6 |
-
import os
|
| 7 |
-
from datetime import datetime
|
| 8 |
import io
|
| 9 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
# Hugging Face setup
|
| 12 |
HF_TOKEN = st.secrets["HF_TOKEN"]
|
| 13 |
HF_USERNAME = st.secrets["HF_USERNAME"]
|
| 14 |
DATASET_NAME = "jobeasz"
|
| 15 |
|
| 16 |
-
@st.cache_data
|
| 17 |
-
def
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
"Data Annotation Expert", "Data Crowdsourcing Manager"
|
| 22 |
-
]
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
hash_object = hashlib.md5(current_time.encode())
|
| 35 |
-
random_hash = hash_object.hexdigest()[:8]
|
| 36 |
-
return f"{random_hash}.csv"
|
| 37 |
|
| 38 |
-
|
| 39 |
-
df = pd.DataFrame(jobs)
|
| 40 |
-
filename = generate_random_filename()
|
| 41 |
-
|
| 42 |
-
if not os.path.exists("data"):
|
| 43 |
-
os.makedirs("data")
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
)
|
| 82 |
-
|
| 83 |
-
if
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
st.
|
| 100 |
-
st.
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
)
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
+
import plotly.express as px
|
| 4 |
from huggingface_hub import HfApi
|
|
|
|
|
|
|
| 5 |
import io
|
| 6 |
+
from datetime import datetime, timedelta
|
| 7 |
+
import time
|
| 8 |
+
|
| 9 |
+
# Set page config for a wider layout and custom theme
|
| 10 |
+
st.set_page_config(layout="wide", page_title="Job Listings Dashboard")
|
| 11 |
+
|
| 12 |
+
# Custom CSS for black background and styling
|
| 13 |
+
st.markdown("""
|
| 14 |
+
<style>
|
| 15 |
+
.stApp {
|
| 16 |
+
background-color: #000000;
|
| 17 |
+
color: #FFFFFF;
|
| 18 |
+
}
|
| 19 |
+
.stButton>button {
|
| 20 |
+
background-color: #4e79a7;
|
| 21 |
+
color: white;
|
| 22 |
+
}
|
| 23 |
+
.stSelectbox, .stMultiSelect {
|
| 24 |
+
color: #FFFFFF;
|
| 25 |
+
}
|
| 26 |
+
.stDataFrame {
|
| 27 |
+
background-color: #1E1E1E;
|
| 28 |
+
}
|
| 29 |
+
.plotly-graph-div {
|
| 30 |
+
background-color: #1E1E1E;
|
| 31 |
+
}
|
| 32 |
+
.big-font {
|
| 33 |
+
font-size: 48px;
|
| 34 |
+
font-weight: bold;
|
| 35 |
+
text-align: center;
|
| 36 |
+
}
|
| 37 |
+
</style>
|
| 38 |
+
""", unsafe_allow_html=True)
|
| 39 |
|
| 40 |
# Hugging Face setup
|
| 41 |
HF_TOKEN = st.secrets["HF_TOKEN"]
|
| 42 |
HF_USERNAME = st.secrets["HF_USERNAME"]
|
| 43 |
DATASET_NAME = "jobeasz"
|
| 44 |
|
| 45 |
+
@st.cache_data(ttl=3600)
|
| 46 |
+
def load_and_concat_data():
|
| 47 |
+
api = HfApi()
|
| 48 |
+
dataset_files = api.list_repo_files(repo_id=f"{HF_USERNAME}/{DATASET_NAME}", repo_type="dataset")
|
| 49 |
+
csv_files = [file for file in dataset_files if file.endswith('.csv')]
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
all_data = []
|
| 52 |
+
for file in csv_files:
|
| 53 |
+
try:
|
| 54 |
+
file_content = api.hf_hub_download(repo_id=f"{HF_USERNAME}/{DATASET_NAME}", filename=file, repo_type="dataset", token=HF_TOKEN)
|
| 55 |
+
df = pd.read_csv(file_content)
|
| 56 |
+
all_data.append(df)
|
| 57 |
+
except Exception:
|
| 58 |
+
pass # Silently skip files that can't be processed
|
| 59 |
|
| 60 |
+
if not all_data:
|
| 61 |
+
return pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
+
concatenated_df = pd.concat(all_data, ignore_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
+
columns_to_keep = [
|
| 66 |
+
'site', 'job_url', 'title', 'company', 'location',
|
| 67 |
+
'job_type', 'date_posted', 'is_remote', 'description', 'company_url'
|
| 68 |
+
]
|
| 69 |
+
filtered_df = concatenated_df[columns_to_keep].reset_index(drop=True)
|
| 70 |
+
filtered_df['date_posted'] = pd.to_datetime(filtered_df['date_posted'], errors='coerce')
|
| 71 |
|
| 72 |
+
# Drop duplicates
|
| 73 |
+
filtered_df = filtered_df.drop_duplicates()
|
| 74 |
|
| 75 |
+
return filtered_df
|
| 76 |
+
|
| 77 |
+
@st.cache_data
|
| 78 |
+
def get_unique_values(df):
|
| 79 |
+
return {
|
| 80 |
+
'companies': df['company'].unique(),
|
| 81 |
+
'locations': df['location'].unique(),
|
| 82 |
+
'job_types': df['job_type'].unique()
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
def display_timer():
|
| 86 |
+
placeholder = st.empty()
|
| 87 |
+
for i in range(15, 0, -1):
|
| 88 |
+
placeholder.markdown(f"<p class='big-font'>Loading data... {i}</p>", unsafe_allow_html=True)
|
| 89 |
+
time.sleep(1)
|
| 90 |
+
placeholder.empty()
|
| 91 |
+
|
| 92 |
+
def main():
|
| 93 |
+
st.title("Job Listings Dashboard")
|
| 94 |
+
|
| 95 |
+
display_timer()
|
| 96 |
+
|
| 97 |
+
df = load_and_concat_data()
|
| 98 |
+
|
| 99 |
+
if df.empty:
|
| 100 |
+
st.error("No data available. Please check your dataset.")
|
| 101 |
+
return
|
| 102 |
+
|
| 103 |
+
# Sidebar for navigation
|
| 104 |
+
st.sidebar.title("Navigation")
|
| 105 |
+
page = st.sidebar.radio("Go to", ["Dashboard", "Data Explorer"])
|
| 106 |
+
|
| 107 |
+
if page == "Dashboard":
|
| 108 |
+
display_dashboard(df)
|
| 109 |
+
elif page == "Data Explorer":
|
| 110 |
+
display_data_explorer(df)
|
| 111 |
+
|
| 112 |
+
@st.cache_data
|
| 113 |
+
def create_chart(data, x, y, title, color_sequence):
|
| 114 |
+
fig = px.bar(data, x=x, y=y, title=title, color_discrete_sequence=color_sequence)
|
| 115 |
+
fig.update_layout(plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)', font_color='#FFFFFF')
|
| 116 |
+
return fig
|
| 117 |
+
|
| 118 |
+
def display_dashboard(df):
|
| 119 |
+
col1, col2 = st.columns(2)
|
| 120 |
+
|
| 121 |
+
with col1:
|
| 122 |
+
st.subheader("Job Postings Overview")
|
| 123 |
+
st.metric("Total Job Postings", len(df))
|
| 124 |
+
st.metric("Unique Companies", df['company'].nunique())
|
| 125 |
+
st.metric("Unique Locations", df['location'].nunique())
|
| 126 |
+
|
| 127 |
+
min_date = df['date_posted'].min().date()
|
| 128 |
+
max_date = df['date_posted'].max().date()
|
| 129 |
+
st.write(f"Job postings from {min_date} to {max_date}")
|
| 130 |
+
|
| 131 |
+
with col2:
|
| 132 |
+
top_companies = df['company'].value_counts().head(10)
|
| 133 |
+
fig = create_chart(top_companies, top_companies.index, top_companies.values, "Top 10 Companies", ['#4e79a7'])
|
| 134 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 135 |
+
|
| 136 |
+
df_by_date = df.groupby('date_posted').size().reset_index(name='count')
|
| 137 |
+
fig = px.line(df_by_date, x='date_posted', y='count', title="Job Postings Over Time", color_discrete_sequence=['#4e79a7'])
|
| 138 |
+
fig.update_layout(plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)', font_color='#FFFFFF')
|
| 139 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 140 |
+
|
| 141 |
+
col3, col4 = st.columns(2)
|
| 142 |
+
|
| 143 |
+
with col3:
|
| 144 |
+
top_locations = df['location'].value_counts().head(10)
|
| 145 |
+
fig = create_chart(top_locations, top_locations.index, top_locations.values, "Top 10 Locations", ['#f28e2b'])
|
| 146 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 147 |
+
|
| 148 |
+
with col4:
|
| 149 |
+
job_types = df['job_type'].value_counts()
|
| 150 |
+
fig = px.pie(names=job_types.index, values=job_types.values, title="Job Types Distribution", color_discrete_sequence=px.colors.qualitative.Pastel)
|
| 151 |
+
fig.update_layout(plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)', font_color='#FFFFFF')
|
| 152 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 153 |
+
|
| 154 |
+
@st.cache_data
|
| 155 |
+
def filter_dataframe(df, companies, locations, job_types):
|
| 156 |
+
filtered_df = df
|
| 157 |
+
if companies:
|
| 158 |
+
filtered_df = filtered_df[filtered_df['company'].isin(companies)]
|
| 159 |
+
if locations:
|
| 160 |
+
filtered_df = filtered_df[filtered_df['location'].isin(locations)]
|
| 161 |
+
if job_types:
|
| 162 |
+
filtered_df = filtered_df[filtered_df['job_type'].isin(job_types)]
|
| 163 |
+
return filtered_df
|
| 164 |
+
|
| 165 |
+
def display_data_explorer(df):
|
| 166 |
+
st.subheader("Data Explorer")
|
| 167 |
+
|
| 168 |
+
show_all = st.radio("Display", ("All Data", "Filtered Data"))
|
| 169 |
+
|
| 170 |
+
if show_all == "Filtered Data":
|
| 171 |
+
unique_values = get_unique_values(df)
|
| 172 |
+
col1, col2, col3 = st.columns(3)
|
| 173 |
+
with col1:
|
| 174 |
+
companies = st.multiselect("Select Companies", options=unique_values['companies'])
|
| 175 |
+
with col2:
|
| 176 |
+
locations = st.multiselect("Select Locations", options=unique_values['locations'])
|
| 177 |
+
with col3:
|
| 178 |
+
job_types = st.multiselect("Select Job Types", options=unique_values['job_types'])
|
| 179 |
|
| 180 |
+
filtered_df = filter_dataframe(df, companies, locations, job_types)
|
| 181 |
+
else:
|
| 182 |
+
filtered_df = df
|
| 183 |
+
|
| 184 |
+
st.write(f"Showing {len(filtered_df)} job listings")
|
| 185 |
+
|
| 186 |
+
def make_clickable(url):
|
| 187 |
+
return f'<a href="{url}" target="_blank" style="color: #4e79a7;">Link</a>'
|
| 188 |
+
|
| 189 |
+
filtered_df['job_url'] = filtered_df['job_url'].apply(make_clickable)
|
| 190 |
+
filtered_df['company_url'] = filtered_df['company_url'].apply(make_clickable)
|
| 191 |
+
|
| 192 |
+
st.write(filtered_df.to_html(escape=False, index=False), unsafe_allow_html=True)
|
| 193 |
+
|
| 194 |
+
if __name__ == "__main__":
|
| 195 |
+
main()
|