Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -90,7 +90,9 @@ def get_unique_values(df):
|
|
| 90 |
'companies': df['company'].unique(),
|
| 91 |
'locations': df['location'].unique(),
|
| 92 |
'job_types': df['job_type'].unique(),
|
| 93 |
-
'Role_Name': df['title'].unique()
|
|
|
|
|
|
|
| 94 |
}
|
| 95 |
|
| 96 |
def create_chart(data, _x, y, title, color_sequence):
|
|
@@ -154,7 +156,7 @@ def display_dashboard(df):
|
|
| 154 |
fig = create_chart(top_job_titles, top_job_titles.index, top_job_titles.values, "Top 20 Job Titles", ['#59a14f'])
|
| 155 |
st.plotly_chart(fig, use_container_width=True)
|
| 156 |
@st.cache_data
|
| 157 |
-
def filter_dataframe(df, companies, locations, job_types,Role_Name):
|
| 158 |
filtered_df = df
|
| 159 |
if companies:
|
| 160 |
filtered_df = filtered_df[filtered_df['company'].isin(companies)]
|
|
@@ -163,7 +165,9 @@ def filter_dataframe(df, companies, locations, job_types,Role_Name):
|
|
| 163 |
if job_types:
|
| 164 |
filtered_df = filtered_df[filtered_df['job_type'].isin(job_types)]
|
| 165 |
if Role_Name:
|
| 166 |
-
filtered_df = filtered_df[filtered_df['title'].isin(
|
|
|
|
|
|
|
| 167 |
return filtered_df
|
| 168 |
|
| 169 |
def display_data_explorer(df):
|
|
@@ -173,7 +177,7 @@ def display_data_explorer(df):
|
|
| 173 |
|
| 174 |
if show_all == "Filtered Data":
|
| 175 |
unique_values = get_unique_values(df)
|
| 176 |
-
col1, col2, col3, col4 = st.columns(
|
| 177 |
with col1:
|
| 178 |
companies = st.multiselect("Select Companies", options=unique_values['companies'])
|
| 179 |
with col2:
|
|
@@ -182,8 +186,10 @@ def display_data_explorer(df):
|
|
| 182 |
job_types = st.multiselect("Select Job Types", options=unique_values['job_types'])
|
| 183 |
with col4:
|
| 184 |
Role_type = st.multiselect("Select Role Types", options=unique_values['Role_Name'])
|
|
|
|
|
|
|
| 185 |
|
| 186 |
-
filtered_df = filter_dataframe(df, companies, locations, job_types, Role_type)
|
| 187 |
else:
|
| 188 |
filtered_df = df
|
| 189 |
|
|
|
|
| 90 |
'companies': df['company'].unique(),
|
| 91 |
'locations': df['location'].unique(),
|
| 92 |
'job_types': df['job_type'].unique(),
|
| 93 |
+
'Role_Name': df['title'].unique(),
|
| 94 |
+
'Date_posted': df['date_posted'].unique()
|
| 95 |
+
|
| 96 |
}
|
| 97 |
|
| 98 |
def create_chart(data, _x, y, title, color_sequence):
|
|
|
|
| 156 |
fig = create_chart(top_job_titles, top_job_titles.index, top_job_titles.values, "Top 20 Job Titles", ['#59a14f'])
|
| 157 |
st.plotly_chart(fig, use_container_width=True)
|
| 158 |
@st.cache_data
|
| 159 |
+
def filter_dataframe(df, companies, locations, job_types,Role_Name,Date_posted):
|
| 160 |
filtered_df = df
|
| 161 |
if companies:
|
| 162 |
filtered_df = filtered_df[filtered_df['company'].isin(companies)]
|
|
|
|
| 165 |
if job_types:
|
| 166 |
filtered_df = filtered_df[filtered_df['job_type'].isin(job_types)]
|
| 167 |
if Role_Name:
|
| 168 |
+
filtered_df = filtered_df[filtered_df['title'].isin(Role_name)]
|
| 169 |
+
if Date_posted:
|
| 170 |
+
filtered_df = filtered_df[filtered_df['date_posted'].isin(Date_posted)]
|
| 171 |
return filtered_df
|
| 172 |
|
| 173 |
def display_data_explorer(df):
|
|
|
|
| 177 |
|
| 178 |
if show_all == "Filtered Data":
|
| 179 |
unique_values = get_unique_values(df)
|
| 180 |
+
col1, col2, col3, col4,col5 = st.columns(5)
|
| 181 |
with col1:
|
| 182 |
companies = st.multiselect("Select Companies", options=unique_values['companies'])
|
| 183 |
with col2:
|
|
|
|
| 186 |
job_types = st.multiselect("Select Job Types", options=unique_values['job_types'])
|
| 187 |
with col4:
|
| 188 |
Role_type = st.multiselect("Select Role Types", options=unique_values['Role_Name'])
|
| 189 |
+
with col5:
|
| 190 |
+
Date_posted = st.multiselect("Select Role Types", options=unique_values['Date_posted'])
|
| 191 |
|
| 192 |
+
filtered_df = filter_dataframe(df, companies, locations, job_types, Role_type,Date_posted)
|
| 193 |
else:
|
| 194 |
filtered_df = df
|
| 195 |
|