Spaces:
Runtime error
Runtime error
Create multimodal_ai.py
Browse files- multimodal_ai.py +47 -0
multimodal_ai.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
from huggingface_hub import HfApi, login
|
| 5 |
+
|
| 6 |
+
class MultimodalAI:
|
| 7 |
+
def __init__(self):
|
| 8 |
+
# Obtain Hugging Face token in .env file
|
| 9 |
+
self.HUGGINGFACE_TOKEN = os.environ["HUGGINGFACE_TOKEN"]
|
| 10 |
+
|
| 11 |
+
# Check if the token is retrieved successfully
|
| 12 |
+
if self.HUGGINGFACE_TOKEN is None:
|
| 13 |
+
raise ValueError("HUGGINGFACE_TOKEN environment variable is not set.")
|
| 14 |
+
|
| 15 |
+
# Authenticate with Hugging Face
|
| 16 |
+
self.api = HfApi()
|
| 17 |
+
login(token=self.HUGGINGFACE_TOKEN)
|
| 18 |
+
|
| 19 |
+
# Model selection
|
| 20 |
+
self.model_name = "openai-community/gpt2"
|
| 21 |
+
|
| 22 |
+
# Check if a CUDA-enabled GPU is available.
|
| 23 |
+
# If available, move the model to the GPU (cuda:0) for faster computation.
|
| 24 |
+
# Otherwise, move the model to the CPU.
|
| 25 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 26 |
+
|
| 27 |
+
# Load the model and tokenizer
|
| 28 |
+
self._load_model_and_tokenizer()
|
| 29 |
+
|
| 30 |
+
def _load_model_and_tokenizer(self):
|
| 31 |
+
# Load LLama model and tokenizer
|
| 32 |
+
self.model = AutoModelForCausalLM.from_pretrained(self.model_name,
|
| 33 |
+
token=self.HUGGINGFACE_TOKEN).to(self.device)
|
| 34 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name,
|
| 35 |
+
token=self.HUGGINGFACE_TOKEN)
|
| 36 |
+
|
| 37 |
+
def generate_response(self, text_input, max_new_tokens=50):
|
| 38 |
+
# Tokenize input text
|
| 39 |
+
inputs = self.tokenizer(text_input, return_tensors="pt").to(self.device)
|
| 40 |
+
|
| 41 |
+
# Generate response
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
outputs = self.model.generate(**inputs, max_new_tokens=max_new_tokens, pad_token_id=self.tokenizer.pad_token_id)
|
| 44 |
+
|
| 45 |
+
# Decode and return the response
|
| 46 |
+
response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 47 |
+
return response_text
|