File size: 7,759 Bytes
39594de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca6e516
 
39594de
 
 
ca6e516
39594de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93f67bb
 
39594de
 
 
 
 
 
 
 
 
 
80d8a8b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import io
import os
import gdown
import base64
from typing import Optional
import cv2
import numpy as np
from PIL import Image
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.projects.point_rend import add_pointrend_config

# -------------------------------
# FastAPI setup
# -------------------------------
app = FastAPI(title="Rooftop Segmentation API")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# -------------------------------
# Available epsilons
# -------------------------------
EPSILONS = [0.01, 0.005, 0.004, 0.003, 0.001]

@app.get("/epsilons")
def get_epsilons():
    return {"epsilons": EPSILONS}

# -------------------------------
# Google Drive model download (irregular-flat)
# -------------------------------
MODEL_PATH_IRREGULAR = "/tmp/model_irregular_flat.pth"
DRIVE_FILE_ID = "15vi4zPhCs3aBnGepVnXFOqQjxdK1jpnA"

def download_irregular_model():
    if not os.path.exists(MODEL_PATH_IRREGULAR):
        url = f"https://drive.google.com/uc?id={DRIVE_FILE_ID}"
        tmp_dir = "/tmp/gdown"
        os.makedirs(tmp_dir, exist_ok=True)
        os.environ["GDOWN_CACHE_DIR"] = tmp_dir
        print("Downloading irregular-flat Detectron2 model...")
        gdown.download(url, MODEL_PATH_IRREGULAR, quiet=False, fuzzy=True, use_cookies=False)
        print("Download complete.")
    else:
        print("Irregular-flat model already exists, skipping download.")

download_irregular_model()

if os.path.exists(MODEL_PATH_IRREGULAR):
    print("Irregular-flat model is ready at", MODEL_PATH_IRREGULAR)
else:
    print("Irregular-flat model NOT found! Something went wrong!")

# -------------------------------
# Detectron2 model setup
# -------------------------------
def setup_model_rect(weights_path: str):
    cfg = get_cfg()
    add_pointrend_config(cfg)
    cfg_path = "detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml"
    cfg.merge_from_file(cfg_path)
    cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
    cfg.MODEL.POINT_HEAD.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES
    cfg.MODEL.WEIGHTS = weights_path
    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
    cfg.MODEL.DEVICE = "cpu"
    return DefaultPredictor(cfg)

def setup_model_irregular(weights_path: str):
    cfg = get_cfg()
    add_pointrend_config(cfg)
    cfg_path = "detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml"
    cfg.merge_from_file(cfg_path)
    cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
    cfg.MODEL.POINT_HEAD.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES
    cfg.MODEL.WEIGHTS = weights_path
    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
    cfg.MODEL.DEVICE = "cpu"
    return DefaultPredictor(cfg)

# Load models
predictor_rect = setup_model_rect("/app/model_rect_final.pth")
predictor_irregular_flat = setup_model_irregular(MODEL_PATH_IRREGULAR)

# -------------------------------
# Post-processing functions
# -------------------------------
def postprocess_rect(mask: np.ndarray, epsilon: float) -> Optional[np.ndarray]:
    mask_uint8 = (mask * 255).astype(np.uint8)
    contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if not contours:
        return None
    c = max(contours, key=cv2.contourArea)
    eps = epsilon * cv2.arcLength(c, True)
    approx = cv2.approxPolyDP(c, eps, True)
    simp = np.zeros_like(mask_uint8)
    cv2.fillPoly(simp, [approx], 255)
    return simp

def postprocess_irregular(mask: np.ndarray, epsilon: float) -> Optional[np.ndarray]:
    mask_uint8 = (mask * 255).astype(np.uint8)
    contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if not contours:
        return None
    c = max(contours, key=cv2.contourArea)
    eps = epsilon * cv2.arcLength(c, True)
    polygon = cv2.approxPolyDP(c, eps, True)
    return polygon.reshape(-1, 2)

def mask_to_polygon(mask: np.ndarray) -> Optional[np.ndarray]:
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if not contours:
        return None
    largest = max(contours, key=cv2.contourArea)
    return largest.reshape(-1, 2)

def extract_polygon_vertices(mask: np.ndarray, epsilon_ratio: float = 0.004):
    """
    Extract clean polygon vertices from a binary mask.
    Returns Nx2 array of vertices.
    """
    mask_uint8 = (mask * 255).astype(np.uint8)
    contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if not contours:
        return None
    c = max(contours, key=cv2.contourArea)
    epsilon = epsilon_ratio * cv2.arcLength(c, True)
    polygon = cv2.approxPolyDP(c, epsilon, True)
    return polygon.reshape(-1, 2)

def im_to_b64_png(im: np.ndarray) -> str:
    _, buffer = cv2.imencode(".png", im)
    return base64.b64encode(buffer).decode()

def overlay_polygon(im: np.ndarray, polygon: Optional[np.ndarray]) -> np.ndarray:
    overlay = im.copy()
    if polygon is not None:
        # Draw polygon outline
        cv2.polylines(overlay, [polygon.astype(np.int32)], True, (0, 255, 0), 2)
        
        # Draw vertex points (red circles)
        for (x, y) in polygon:
            cv2.circle(overlay, (int(x), int(y)), radius=4, color=(0, 0, 255), thickness=-1)
            
    return overlay

# -------------------------------
# API endpoints
# -------------------------------
@app.get("/")
def root():
    return {"message": "Rooftop Segmentation API is running!"}

@app.post("/predict")
async def predict(
    file: UploadFile = File(...),
    rooftop_type: str = Form(...),
    epsilon: float = Form(0.004)
):
    contents = await file.read()
    try:
        im_pil = Image.open(io.BytesIO(contents)).convert("RGB")
    except Exception as e:
        return JSONResponse(status_code=400, content={"error": "Invalid image", "detail": str(e)})

    im = np.array(im_pil)[:, :, ::-1].copy()  # RGB -> BGR

    if rooftop_type.lower() == "rectangular":
        predictor = predictor_rect
        post_fn = lambda mask: postprocess_rect(mask, epsilon)
        model_used = "model_rect_final.pth"
    elif rooftop_type.lower() == "irregular":
        predictor = predictor_irregular_flat
        post_fn = lambda mask: postprocess_irregular(mask, epsilon)
        model_used = "model_irregular_flat.pth"
    else:
        return JSONResponse(status_code=400, content={"error": "Invalid rooftop_type. Choose 'rectangular' or 'irregular'."})

    outputs = predictor(im)
    instances = outputs["instances"].to("cpu")

    if len(instances) == 0:
        return {
            "polygon": None,
            "vertices": None,
            "vertex_count": 0,
            "image": None,
            "model_used": model_used,
            "rooftop_type": rooftop_type,
            "epsilon": epsilon
        }

    idx = int(instances.scores.argmax().item())
    raw_mask = instances.pred_masks[idx].numpy().astype(np.uint8)

    result_mask = post_fn(raw_mask)
    polygon = mask_to_polygon(result_mask) if rooftop_type.lower() == "rectangular" else result_mask

    # --- Vertices extraction ---
    # vertices = extract_polygon_vertices(raw_mask, epsilon)
    # vertex_count = len(vertices) if vertices is not None else 0

    overlay = overlay_polygon(im, polygon)
    img_b64 = im_to_b64_png(overlay)

    return {
        "polygon": polygon.tolist() if polygon is not None else None,
        "image": img_b64,
        "model_used": model_used,
        "rooftop_type": rooftop_type,
        "epsilon": epsilon
    }