File size: 6,608 Bytes
734ea1c 979639b 734ea1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import io
import os
import gdown
import base64
import cv2
import numpy as np
from PIL import Image
from typing import Optional
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.projects.point_rend import add_pointrend_config
# -------------------------------
# FastAPI setup
# -------------------------------
app = FastAPI(title="Rooftop Segmentation API")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# -------------------------------
# Available epsilons
# -------------------------------
EPSILONS = [0.01, 0.005, 0.004, 0.003, 0.001]
@app.get("/epsilons")
def get_epsilons():
return {"epsilons": EPSILONS}
# -------------------------------
# Google Drive model download (irregular-flat)
# -------------------------------
MODEL_PATH_IRREGULAR = "/tmp/model_irregular_flat.pth"
DRIVE_FILE_ID = "1GO_Ut-N2e2we8t9mnsysb0P1qMsBF8FW"
def download_irregular_model():
if not os.path.exists(MODEL_PATH_IRREGULAR):
url = f"https://drive.google.com/uc?id={DRIVE_FILE_ID}"
tmp_dir = "/tmp/gdown"
os.makedirs(tmp_dir, exist_ok=True)
os.environ["GDOWN_CACHE_DIR"] = tmp_dir
print("Downloading irregular-flat Detectron2 model...")
gdown.download(url, MODEL_PATH_IRREGULAR, quiet=False, fuzzy=True, use_cookies=False)
print("Download complete.")
else:
print("Irregular-flat model already exists, skipping download.")
download_irregular_model()
if os.path.exists(MODEL_PATH_IRREGULAR):
print("Irregular-flat model is ready at", MODEL_PATH_IRREGULAR)
else:
print("Irregular-flat model NOT found! Something went wrong!")
# -------------------------------
# Detectron2 model setup
# -------------------------------
def setup_model_rect(weights_path: str):
cfg = get_cfg()
add_pointrend_config(cfg)
cfg_path = "detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml"
cfg.merge_from_file(cfg_path)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
cfg.MODEL.POINT_HEAD.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES
cfg.MODEL.WEIGHTS = weights_path
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.DEVICE = "cpu"
return DefaultPredictor(cfg)
def setup_model_irregular(weights_path: str):
cfg = get_cfg()
add_pointrend_config(cfg)
cfg_path = "detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml"
cfg.merge_from_file(cfg_path)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg.MODEL.POINT_HEAD.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES
cfg.MODEL.WEIGHTS = weights_path
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.DEVICE = "cpu"
return DefaultPredictor(cfg)
# Load models
predictor_rect = setup_model_rect("/app/model_rect_final.pth")
predictor_irregular_flat = setup_model_irregular(MODEL_PATH_IRREGULAR)
# -------------------------------
# Utility functions
# -------------------------------
def im_to_b64_png(im: np.ndarray) -> str:
_, buffer = cv2.imencode(".png", im)
return base64.b64encode(buffer).decode()
def extract_polygon(mask: np.ndarray, epsilon_ratio: float = 0.004):
mask_uint8 = (mask * 255).astype(np.uint8)
contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return None
c = max(contours, key=cv2.contourArea)
epsilon = epsilon_ratio * cv2.arcLength(c, True)
polygon = cv2.approxPolyDP(c, epsilon, True)
return polygon.reshape(-1, 2)
def overlay_polygon(im: np.ndarray, polygon: Optional[np.ndarray], vertex_color=(0,0,255), line_color=(0,255,0)):
overlay = im.copy()
if polygon is not None:
# Draw polygon outline (thin)
cv2.polylines(overlay, [polygon.astype(np.int32)], True, line_color, thickness=2)
# Draw vertices
for i, (x, y) in enumerate(polygon):
cv2.circle(overlay, (int(x), int(y)), 4, vertex_color, -1)
# Draw vertex index (black number)
cv2.putText(overlay, str(i+1), (int(x)+5, int(y)-5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (20,20,20), 1, cv2.LINE_AA)
# Display vertex count on top
vertex_count = len(polygon)
cv2.putText(overlay, f"num_vertices = {vertex_count}", (20, 35),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (20,20,20), 2, cv2.LINE_AA)
return overlay
# -------------------------------
# API endpoints
# -------------------------------
@app.get("/")
def root():
return {"message": "Rooftop Segmentation API is running!"}
@app.post("/predict")
async def predict(
file: UploadFile = File(...),
rooftop_type: str = Form(...),
epsilon: float = Form(0.004)
):
contents = await file.read()
try:
im_pil = Image.open(io.BytesIO(contents)).convert("RGB")
except Exception as e:
return JSONResponse(status_code=400, content={"error": "Invalid image", "detail": str(e)})
im = np.array(im_pil)[:, :, ::-1].copy() # RGB -> BGR
if rooftop_type.lower() == "rectangular":
predictor = predictor_rect
model_used = "model_rect_final.pth"
elif rooftop_type.lower() == "irregular":
predictor = predictor_irregular_flat
model_used = "model_irregular_flat.pth"
else:
return JSONResponse(status_code=400, content={"error": "Invalid rooftop_type. Choose 'rectangular' or 'irregular'."})
outputs = predictor(im)
instances = outputs["instances"].to("cpu")
if len(instances) == 0:
return {
"polygon": None,
"vertices": None,
"vertex_count": 0,
"image": None,
"model_used": model_used,
"rooftop_type": rooftop_type,
"epsilon": epsilon
}
idx = int(instances.scores.argmax().item())
raw_mask = instances.pred_masks[idx].numpy().astype(np.uint8)
polygon = extract_polygon(raw_mask, epsilon_ratio=epsilon)
vertex_count = len(polygon) if polygon is not None else 0
overlay = overlay_polygon(im, polygon)
img_b64 = im_to_b64_png(overlay)
return {
"polygon": polygon.tolist() if polygon is not None else None,
"vertex_count": vertex_count,
"image": img_b64,
"model_used": model_used,
"rooftop_type": rooftop_type,
"epsilon": epsilon
}
|