Noursine's picture
Update main.py
6b96f59 verified
import io
import os
import gdown
import base64
from typing import Optional
import cv2
import numpy as np
from PIL import Image
from fastapi import FastAPI, UploadFile, File, Form
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.projects.point_rend import add_pointrend_config
# -------------------------------
# FastAPI setup
# -------------------------------
app = FastAPI(title="Rooftop Segmentation API")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# -------------------------------
# Available epsilons
# -------------------------------
EPSILONS = [0.01, 0.005, 0.004, 0.003, 0.001]
@app.get("/epsilons")
def get_epsilons():
return {"epsilons": EPSILONS}
# -------------------------------
# Google Drive model download (irregular-flat)
# -------------------------------
MODEL_PATH_IRREGULAR = "/tmp/model_irregular_flat.pth" # <-- changed here
DRIVE_FILE_ID = "15vi4zPhCs3aBnGepVnXFOqQjxdK1jpnA"
def download_irregular_model():
if not os.path.exists(MODEL_PATH_IRREGULAR):
url = f"https://drive.google.com/uc?id={DRIVE_FILE_ID}"
tmp_dir = "/tmp/gdown"
os.makedirs(tmp_dir, exist_ok=True)
os.environ["GDOWN_CACHE_DIR"] = tmp_dir
print("Downloading irregular-flat Detectron2 model...")
gdown.download(
url,
MODEL_PATH_IRREGULAR,
quiet=False,
fuzzy=True,
use_cookies=False
)
print("Download complete.")
else:
print("Irregular-flat model already exists, skipping download.")
# Download the irregular model at startup
download_irregular_model()
# -------------------------------
# Debug check
# -------------------------------
if os.path.exists(MODEL_PATH_IRREGULAR):
print("Irregular-flat model is ready at", MODEL_PATH_IRREGULAR)
else:
print("Irregular-flat model NOT found! Something went wrong!")
# -------------------------------
# Detectron2 model setup
# -------------------------------
def setup_model_rect(weights_path: str):
cfg = get_cfg()
add_pointrend_config(cfg)
cfg_path = "detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml"
cfg.merge_from_file(cfg_path)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2
cfg.MODEL.POINT_HEAD.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES
cfg.MODEL.WEIGHTS = weights_path
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.DEVICE = "cpu"
return DefaultPredictor(cfg)
def setup_model_irregular(weights_path: str):
cfg = get_cfg()
add_pointrend_config(cfg)
cfg_path = "detectron2/projects/PointRend/configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_3x_coco.yaml"
cfg.merge_from_file(cfg_path)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg.MODEL.POINT_HEAD.NUM_CLASSES = cfg.MODEL.ROI_HEADS.NUM_CLASSES
cfg.MODEL.WEIGHTS = weights_path
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.DEVICE = "cpu"
return DefaultPredictor(cfg)
# Load models
predictor_rect = setup_model_rect("/app/model_rect_final.pth")
predictor_irregular_flat = setup_model_irregular(MODEL_PATH_IRREGULAR)
# -------------------------------
# Post-processing functions
# -------------------------------
def postprocess_rect(mask: np.ndarray, epsilon: float) -> Optional[np.ndarray]:
mask_uint8 = (mask * 255).astype(np.uint8)
contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return None
c = max(contours, key=cv2.contourArea)
eps = epsilon * cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, eps, True)
simp = np.zeros_like(mask_uint8)
cv2.fillPoly(simp, [approx], 255)
return simp
def postprocess_irregular(mask: np.ndarray, epsilon: float) -> Optional[np.ndarray]:
mask_uint8 = (mask * 255).astype(np.uint8)
contours, _ = cv2.findContours(mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return None
c = max(contours, key=cv2.contourArea)
eps = epsilon * cv2.arcLength(c, True)
polygon = cv2.approxPolyDP(c, eps, True)
return polygon.reshape(-1, 2)
def mask_to_polygon(mask: np.ndarray) -> Optional[np.ndarray]:
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if not contours:
return None
largest = max(contours, key=cv2.contourArea)
return largest.reshape(-1, 2)
def im_to_b64_png(im: np.ndarray) -> str:
_, buffer = cv2.imencode(".png", im)
return base64.b64encode(buffer).decode()
def overlay_polygon(im: np.ndarray, polygon: Optional[np.ndarray]) -> np.ndarray:
overlay = im.copy()
if polygon is not None:
cv2.polylines(overlay, [polygon.astype(np.int32)], True, (0,0,255), 2)
return overlay
# -------------------------------
# API endpoints
# -------------------------------
@app.get("/")
def root():
return {"message": "Rooftop Segmentation API is running!"}
@app.post("/predict")
async def predict(
file: UploadFile = File(...),
rooftop_type: str = Form(...),
epsilon: float = Form(0.004)
):
contents = await file.read()
try:
im_pil = Image.open(io.BytesIO(contents)).convert("RGB")
except Exception as e:
return JSONResponse(status_code=400, content={"error": "Invalid image", "detail": str(e)})
im = np.array(im_pil)[:, :, ::-1].copy() # RGB -> BGR
if rooftop_type.lower() == "rectangular":
predictor = predictor_rect
post_fn = lambda mask: postprocess_rect(mask, epsilon)
model_used = "model_rect_final.pth"
elif rooftop_type.lower() == "irregular":
predictor = predictor_irregular_flat
post_fn = lambda mask: postprocess_irregular(mask, epsilon)
model_used = "model_irregular_flat.pth"
else:
return JSONResponse(status_code=400, content={"error": "Invalid rooftop_type. Choose 'rectangular' or 'irregular'."})
outputs = predictor(im)
instances = outputs["instances"].to("cpu")
if len(instances) == 0:
return {"polygon": None, "image": None, "model_used": model_used, "rooftop_type": rooftop_type, "epsilon": epsilon}
idx = int(instances.scores.argmax().item())
raw_mask = instances.pred_masks[idx].numpy().astype(np.uint8)
result_mask = post_fn(raw_mask)
polygon = mask_to_polygon(result_mask) if rooftop_type.lower() == "rectangular" else result_mask
overlay = overlay_polygon(im, polygon)
img_b64 = im_to_b64_png(overlay)
return {
"polygon": polygon.tolist() if polygon is not None else None,
"image": img_b64,
"model_used": model_used,
"rooftop_type": rooftop_type,
"epsilon": epsilon
}