Spaces:
Sleeping
Sleeping
Update src/api/main.py
Browse files- src/api/main.py +407 -407
src/api/main.py
CHANGED
|
@@ -1,407 +1,407 @@
|
|
| 1 |
-
"""
|
| 2 |
-
CardioQA FastAPI Backend - PRODUCTION VERSION
|
| 3 |
-
AI-powered cardiac diagnostic assistant with RAG
|
| 4 |
-
Author: Novonil Basak
|
| 5 |
-
"""
|
| 6 |
-
|
| 7 |
-
import os
|
| 8 |
-
import logging
|
| 9 |
-
import time
|
| 10 |
-
from pathlib import Path
|
| 11 |
-
from typing import List, Optional
|
| 12 |
-
from contextlib import asynccontextmanager
|
| 13 |
-
|
| 14 |
-
from fastapi import FastAPI, HTTPException
|
| 15 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 16 |
-
from pydantic import BaseModel, Field
|
| 17 |
-
import chromadb
|
| 18 |
-
from sentence_transformers import SentenceTransformer
|
| 19 |
-
import google.generativeai as genai
|
| 20 |
-
|
| 21 |
-
# Setup logging
|
| 22 |
-
logging.basicConfig(level=logging.INFO)
|
| 23 |
-
logger = logging.getLogger(__name__)
|
| 24 |
-
|
| 25 |
-
# Global variables
|
| 26 |
-
collection = None
|
| 27 |
-
embedding_model = None
|
| 28 |
-
gemini_model = None
|
| 29 |
-
safety_validator = None
|
| 30 |
-
|
| 31 |
-
# Pydantic models
|
| 32 |
-
class QueryRequest(BaseModel):
|
| 33 |
-
query: str = Field(..., min_length=5, max_length=500)
|
| 34 |
-
include_metadata: bool = Field(default=True)
|
| 35 |
-
|
| 36 |
-
class QueryResponse(BaseModel):
|
| 37 |
-
response: str
|
| 38 |
-
safety_score: int
|
| 39 |
-
confidence: str
|
| 40 |
-
knowledge_sources: int
|
| 41 |
-
top_similarity: float
|
| 42 |
-
warnings: List[str]
|
| 43 |
-
response_time: float
|
| 44 |
-
|
| 45 |
-
class MedicalSafetyValidator:
|
| 46 |
-
"""Medical safety validation system"""
|
| 47 |
-
|
| 48 |
-
def __init__(self):
|
| 49 |
-
self.emergency_keywords = [
|
| 50 |
-
'heart attack', 'chest pain', 'shortness of breath', 'stroke',
|
| 51 |
-
'severe pain', 'bleeding', 'unconscious', 'emergency', 'crushing pain'
|
| 52 |
-
]
|
| 53 |
-
|
| 54 |
-
def validate_response(self, response_text: str, user_query: str) -> dict:
|
| 55 |
-
"""Validate medical safety of AI response"""
|
| 56 |
-
safety_score = 85
|
| 57 |
-
warnings = []
|
| 58 |
-
|
| 59 |
-
# Check for emergency situations
|
| 60 |
-
if any(keyword in user_query.lower() for keyword in self.emergency_keywords):
|
| 61 |
-
if 'seek immediate medical attention' not in response_text.lower():
|
| 62 |
-
warnings.append("CRITICAL: Emergency situation detected")
|
| 63 |
-
safety_score -= 20
|
| 64 |
-
else:
|
| 65 |
-
safety_score += 10
|
| 66 |
-
|
| 67 |
-
# Check for professional consultation recommendation
|
| 68 |
-
consult_phrases = ['consult', 'doctor', 'physician', 'healthcare provider']
|
| 69 |
-
if any(phrase in response_text.lower() for phrase in consult_phrases):
|
| 70 |
-
safety_score += 10
|
| 71 |
-
else:
|
| 72 |
-
warnings.append("Added professional consultation recommendation")
|
| 73 |
-
safety_score -= 15
|
| 74 |
-
|
| 75 |
-
# Check response quality
|
| 76 |
-
if len(response_text) > 200:
|
| 77 |
-
safety_score += 5
|
| 78 |
-
|
| 79 |
-
# Check for dangerous statements
|
| 80 |
-
dangerous_phrases = ['you definitely have', 'this is certainly', 'never see a doctor']
|
| 81 |
-
if any(phrase in response_text.lower() for phrase in dangerous_phrases):
|
| 82 |
-
warnings.append("Contains potentially dangerous medical statements")
|
| 83 |
-
safety_score -= 25
|
| 84 |
-
|
| 85 |
-
safety_score = min(100, max(50, safety_score))
|
| 86 |
-
|
| 87 |
-
return {
|
| 88 |
-
'safety_score': safety_score,
|
| 89 |
-
'warnings': warnings,
|
| 90 |
-
'is_safe': safety_score >= 70
|
| 91 |
-
}
|
| 92 |
-
|
| 93 |
-
def add_safety_disclaimers(self, response_text: str, safety_check: dict) -> str:
|
| 94 |
-
"""Add medical disclaimers"""
|
| 95 |
-
disclaimers = "\n\nβ οΈ **MEDICAL DISCLAIMER**: Educational purposes only.\nπ¨ββοΈ **RECOMMENDATION**: Consult healthcare professionals."
|
| 96 |
-
|
| 97 |
-
if safety_check['safety_score'] < 80:
|
| 98 |
-
disclaimers += "\nπ¨ **IMPORTANT**: For severe symptoms, seek immediate medical attention."
|
| 99 |
-
|
| 100 |
-
return response_text + disclaimers
|
| 101 |
-
|
| 102 |
-
@asynccontextmanager
|
| 103 |
-
async def lifespan(app: FastAPI):
|
| 104 |
-
"""Initialize and cleanup application resources"""
|
| 105 |
-
global collection, embedding_model, gemini_model, safety_validator
|
| 106 |
-
|
| 107 |
-
logger.info("π« Starting CardioQA API...")
|
| 108 |
-
|
| 109 |
-
try:
|
| 110 |
-
# FIXED: Force ChromaDB to create new compatible database
|
| 111 |
-
possible_paths = [
|
| 112 |
-
"./chroma_db",
|
| 113 |
-
"chroma_db",
|
| 114 |
-
"/opt/render/project/src/chroma_db",
|
| 115 |
-
Path.cwd() / "chroma_db",
|
| 116 |
-
Path(__file__).parent.parent.parent / "chroma_db"
|
| 117 |
-
]
|
| 118 |
-
|
| 119 |
-
db_path = None
|
| 120 |
-
for path in possible_paths:
|
| 121 |
-
path_obj = Path(path)
|
| 122 |
-
logger.info(f"π Checking: {path_obj.absolute()}")
|
| 123 |
-
if path_obj.exists() and path_obj.is_dir():
|
| 124 |
-
db_path = str(path_obj)
|
| 125 |
-
logger.info(f"β
Found ChromaDB at: {db_path}")
|
| 126 |
-
break
|
| 127 |
-
|
| 128 |
-
if not db_path:
|
| 129 |
-
# Create new ChromaDB if not found
|
| 130 |
-
logger.info("π Creating new ChromaDB...")
|
| 131 |
-
db_path = "./chroma_db_render"
|
| 132 |
-
|
| 133 |
-
# Initialize new ChromaDB and recreate collection
|
| 134 |
-
client = chromadb.PersistentClient(path=db_path)
|
| 135 |
-
try:
|
| 136 |
-
collection = client.get_collection(name="cardiac_knowledge")
|
| 137 |
-
logger.info(f"β
Using existing collection: {collection.count()} documents")
|
| 138 |
-
except:
|
| 139 |
-
logger.info("Creating new collection with sample data...")
|
| 140 |
-
collection = client.create_collection(name="cardiac_knowledge")
|
| 141 |
-
|
| 142 |
-
# Add sample cardiac Q&A data for demo
|
| 143 |
-
sample_data = [
|
| 144 |
-
{
|
| 145 |
-
"question": "What are the symptoms of heart attack?",
|
| 146 |
-
"answer": "Common heart attack symptoms include chest pain or discomfort, shortness of breath, pain in arms/back/neck/jaw, cold sweat, nausea, and lightheadedness. Seek immediate medical attention if experiencing these symptoms.",
|
| 147 |
-
"qtype": "symptoms"
|
| 148 |
-
},
|
| 149 |
-
{
|
| 150 |
-
"question": "How can I prevent heart disease?",
|
| 151 |
-
"answer": "Heart disease prevention includes regular exercise, healthy diet low in saturated fats, not smoking, limiting alcohol, managing stress, controlling blood pressure and cholesterol, and regular medical checkups.",
|
| 152 |
-
"qtype": "prevention"
|
| 153 |
-
},
|
| 154 |
-
{
|
| 155 |
-
"question": "What causes high blood pressure?",
|
| 156 |
-
"answer": "High blood pressure can be caused by genetics, age, diet high in sodium, lack of exercise, obesity, excessive alcohol consumption, stress, and certain medical conditions. Regular monitoring is important.",
|
| 157 |
-
"qtype": "causes"
|
| 158 |
-
}
|
| 159 |
-
]
|
| 160 |
-
|
| 161 |
-
for i, item in enumerate(sample_data):
|
| 162 |
-
collection.add(
|
| 163 |
-
documents=[item["answer"]],
|
| 164 |
-
metadatas=[{
|
| 165 |
-
"question": item["question"],
|
| 166 |
-
"answer": item["answer"],
|
| 167 |
-
"qtype": item["qtype"]
|
| 168 |
-
}],
|
| 169 |
-
ids=[f"cardiac_{i}"]
|
| 170 |
-
)
|
| 171 |
-
|
| 172 |
-
logger.info(f"β
Created collection with {len(sample_data)} sample documents")
|
| 173 |
-
else:
|
| 174 |
-
# Try to use existing database
|
| 175 |
-
try:
|
| 176 |
-
client = chromadb.PersistentClient(path=db_path)
|
| 177 |
-
collection = client.get_collection(name="cardiac_knowledge")
|
| 178 |
-
logger.info(f"β
Loaded existing database: {collection.count()} documents")
|
| 179 |
-
except Exception as e:
|
| 180 |
-
logger.error(f"β ChromaDB compatibility issue: {e}")
|
| 181 |
-
# Fallback: create new database
|
| 182 |
-
logger.info("Creating fallback database...")
|
| 183 |
-
client = chromadb.PersistentClient(path="./chroma_db_fallback")
|
| 184 |
-
collection = client.create_collection(name="cardiac_knowledge")
|
| 185 |
-
# Add sample data (same as above)
|
| 186 |
-
sample_data = [
|
| 187 |
-
{
|
| 188 |
-
"question": "What are the symptoms of heart attack?",
|
| 189 |
-
"answer": "Common heart attack symptoms include chest pain or discomfort, shortness of breath, pain in arms/back/neck/jaw, cold sweat, nausea, and lightheadedness. Seek immediate medical attention.",
|
| 190 |
-
"qtype": "symptoms"
|
| 191 |
-
}
|
| 192 |
-
]
|
| 193 |
-
collection.add(
|
| 194 |
-
documents=[sample_data[0]["answer"]],
|
| 195 |
-
metadatas=[sample_data[0]],
|
| 196 |
-
ids=["cardiac_0"]
|
| 197 |
-
)
|
| 198 |
-
logger.info("β
Created fallback database")
|
| 199 |
-
|
| 200 |
-
# Load embedding model
|
| 201 |
-
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 202 |
-
logger.info("β
Loaded embedding model")
|
| 203 |
-
|
| 204 |
-
# Configure Gemini API
|
| 205 |
-
api_key = os.getenv("GEMINI_API_KEY")
|
| 206 |
-
if not api_key:
|
| 207 |
-
raise Exception("β GEMINI_API_KEY environment variable not set")
|
| 208 |
-
|
| 209 |
-
genai.configure(api_key=api_key)
|
| 210 |
-
gemini_model = genai.GenerativeModel('gemini-2.0-flash')
|
| 211 |
-
|
| 212 |
-
# Test Gemini connection
|
| 213 |
-
test_response = gemini_model.generate_content("Say 'CardioQA ready!'")
|
| 214 |
-
logger.info(f"β
Gemini test: {test_response.text}")
|
| 215 |
-
|
| 216 |
-
# Initialize safety validator
|
| 217 |
-
safety_validator = MedicalSafetyValidator()
|
| 218 |
-
logger.info("β
Safety validator ready")
|
| 219 |
-
|
| 220 |
-
logger.info("π CardioQA API fully initialized!")
|
| 221 |
-
|
| 222 |
-
yield
|
| 223 |
-
|
| 224 |
-
except Exception as e:
|
| 225 |
-
logger.error(f"β Startup failed: {str(e)}")
|
| 226 |
-
raise
|
| 227 |
-
|
| 228 |
-
# Cleanup
|
| 229 |
-
logger.info("π Shutting down CardioQA API...")
|
| 230 |
-
|
| 231 |
-
# Initialize FastAPI with lifespan
|
| 232 |
-
app = FastAPI(
|
| 233 |
-
title="CardioQA API",
|
| 234 |
-
description="AI-powered cardiac diagnostic assistant with RAG",
|
| 235 |
-
version="1.0.0",
|
| 236 |
-
lifespan=lifespan
|
| 237 |
-
)
|
| 238 |
-
|
| 239 |
-
# Add CORS middleware
|
| 240 |
-
app.add_middleware(
|
| 241 |
-
CORSMiddleware,
|
| 242 |
-
allow_origins=["*"],
|
| 243 |
-
allow_credentials=True,
|
| 244 |
-
allow_methods=["GET", "POST"],
|
| 245 |
-
allow_headers=["*"],
|
| 246 |
-
)
|
| 247 |
-
|
| 248 |
-
@app.get("/")
|
| 249 |
-
async def root():
|
| 250 |
-
"""API root endpoint"""
|
| 251 |
-
return {
|
| 252 |
-
"message": "CardioQA API - AI-Powered Cardiac Diagnostic Assistant",
|
| 253 |
-
"version": "1.0.0",
|
| 254 |
-
"status": "running",
|
| 255 |
-
"endpoints": {
|
| 256 |
-
"health": "/health",
|
| 257 |
-
"query": "/query",
|
| 258 |
-
"docs": "/docs",
|
| 259 |
-
"stats": "/stats"
|
| 260 |
-
}
|
| 261 |
-
}
|
| 262 |
-
|
| 263 |
-
@app.get("/health")
|
| 264 |
-
async def health_check():
|
| 265 |
-
"""Health check endpoint"""
|
| 266 |
-
try:
|
| 267 |
-
db_count = collection.count() if collection else 0
|
| 268 |
-
model_status = "ready" if gemini_model else "not loaded"
|
| 269 |
-
|
| 270 |
-
return {
|
| 271 |
-
"status": "healthy",
|
| 272 |
-
"database_count": db_count,
|
| 273 |
-
"model_status": model_status,
|
| 274 |
-
"api_version": "1.0.0",
|
| 275 |
-
"deployment": "render-production"
|
| 276 |
-
}
|
| 277 |
-
except Exception as e:
|
| 278 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 279 |
-
|
| 280 |
-
@app.post("/query", response_model=QueryResponse)
|
| 281 |
-
async def query_cardioqa(request: QueryRequest):
|
| 282 |
-
"""Main CardioQA query endpoint"""
|
| 283 |
-
start_time = time.time()
|
| 284 |
-
|
| 285 |
-
try:
|
| 286 |
-
if not collection or not gemini_model or not safety_validator:
|
| 287 |
-
raise HTTPException(status_code=503, detail="System not fully initialized")
|
| 288 |
-
|
| 289 |
-
logger.info(f"Processing query: {request.query[:100]}...")
|
| 290 |
-
|
| 291 |
-
# Search knowledge base
|
| 292 |
-
results = collection.query(
|
| 293 |
-
query_texts=[request.query],
|
| 294 |
-
n_results=3
|
| 295 |
-
)
|
| 296 |
-
|
| 297 |
-
if not results['documents'][0]:
|
| 298 |
-
raise HTTPException(status_code=404, detail="No relevant cardiac information found")
|
| 299 |
-
|
| 300 |
-
# Format knowledge context
|
| 301 |
-
knowledge_context = []
|
| 302 |
-
for doc, metadata, distance in zip(
|
| 303 |
-
results['documents'][0],
|
| 304 |
-
results['metadatas'][0],
|
| 305 |
-
results['distances'][0]
|
| 306 |
-
):
|
| 307 |
-
knowledge_context.append({
|
| 308 |
-
'question': metadata['question'],
|
| 309 |
-
'answer': metadata['answer'],
|
| 310 |
-
'similarity': 1 - distance
|
| 311 |
-
})
|
| 312 |
-
|
| 313 |
-
# Create medical prompt
|
| 314 |
-
context_text = f"Medical Evidence:\nQ: {knowledge_context[0]['question']}\nA: {knowledge_context[0]['answer']}"
|
| 315 |
-
|
| 316 |
-
prompt = f"""You are CardioQA, a specialized cardiac health assistant.
|
| 317 |
-
|
| 318 |
-
MEDICAL RESPONSE RULES:
|
| 319 |
-
- Never provide definitive diagnoses
|
| 320 |
-
- Always recommend consulting healthcare professionals
|
| 321 |
-
- Use **bold** for important medical points
|
| 322 |
-
- Be educational and evidence-based
|
| 323 |
-
- Include appropriate medical caution
|
| 324 |
-
|
| 325 |
-
USER QUESTION: {request.query}
|
| 326 |
-
|
| 327 |
-
{context_text}
|
| 328 |
-
|
| 329 |
-
Provide a helpful, evidence-based response with proper **bold** formatting:"""
|
| 330 |
-
|
| 331 |
-
# Generate AI response
|
| 332 |
-
response = gemini_model.generate_content(
|
| 333 |
-
prompt,
|
| 334 |
-
generation_config={
|
| 335 |
-
'temperature': 0.1,
|
| 336 |
-
'max_output_tokens': 800,
|
| 337 |
-
}
|
| 338 |
-
)
|
| 339 |
-
ai_response = response.text
|
| 340 |
-
|
| 341 |
-
# Apply safety validation
|
| 342 |
-
safety_check = safety_validator.validate_response(ai_response, request.query)
|
| 343 |
-
safe_response = safety_validator.add_safety_disclaimers(ai_response, safety_check)
|
| 344 |
-
|
| 345 |
-
# Calculate confidence level
|
| 346 |
-
similarity = knowledge_context[0]['similarity']
|
| 347 |
-
if similarity > 0.6:
|
| 348 |
-
confidence = 'High'
|
| 349 |
-
elif similarity > 0.4:
|
| 350 |
-
confidence = 'Medium'
|
| 351 |
-
elif similarity > 0.2:
|
| 352 |
-
confidence = 'Low'
|
| 353 |
-
else:
|
| 354 |
-
confidence = 'Very Low'
|
| 355 |
-
|
| 356 |
-
response_time = time.time() - start_time
|
| 357 |
-
|
| 358 |
-
return QueryResponse(
|
| 359 |
-
response=safe_response,
|
| 360 |
-
safety_score=safety_check['safety_score'],
|
| 361 |
-
confidence=confidence,
|
| 362 |
-
knowledge_sources=len(knowledge_context),
|
| 363 |
-
top_similarity=knowledge_context[0]['similarity'],
|
| 364 |
-
warnings=safety_check['warnings'],
|
| 365 |
-
response_time=round(response_time, 2)
|
| 366 |
-
)
|
| 367 |
-
|
| 368 |
-
except HTTPException:
|
| 369 |
-
raise
|
| 370 |
-
except Exception as e:
|
| 371 |
-
logger.error(f"Query processing error: {str(e)}")
|
| 372 |
-
raise HTTPException(status_code=500, detail=f"Processing error: {str(e)}")
|
| 373 |
-
|
| 374 |
-
@app.get("/stats")
|
| 375 |
-
async def get_system_stats():
|
| 376 |
-
"""System statistics endpoint"""
|
| 377 |
-
try:
|
| 378 |
-
return {
|
| 379 |
-
"total_documents": collection.count() if collection else 0,
|
| 380 |
-
"embedding_model": "all-MiniLM-L6-v2",
|
| 381 |
-
"llm_model": "gemini-2.0-flash",
|
| 382 |
-
"specialty": "cardiology",
|
| 383 |
-
"safety_features": [
|
| 384 |
-
"emergency_detection",
|
| 385 |
-
"professional_consultation",
|
| 386 |
-
"medical_disclaimers",
|
| 387 |
-
"confidence_scoring"
|
| 388 |
-
],
|
| 389 |
-
"deployment": "render-production",
|
| 390 |
-
"chromadb_version": "compatible"
|
| 391 |
-
}
|
| 392 |
-
except Exception as e:
|
| 393 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 394 |
-
|
| 395 |
-
# FIXED: Proper port binding for Render deployment
|
| 396 |
-
if __name__ == "__main__":
|
| 397 |
-
import uvicorn
|
| 398 |
-
# Railway uses PORT environment variable
|
| 399 |
-
port = int(os.environ.get("PORT",
|
| 400 |
-
logger.info(f"π Starting CardioQA on port {port}")
|
| 401 |
-
uvicorn.run(
|
| 402 |
-
app,
|
| 403 |
-
host="0.0.0.0",
|
| 404 |
-
port=port,
|
| 405 |
-
log_level="info"
|
| 406 |
-
)
|
| 407 |
-
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
CardioQA FastAPI Backend - PRODUCTION VERSION
|
| 3 |
+
AI-powered cardiac diagnostic assistant with RAG
|
| 4 |
+
Author: Novonil Basak
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import logging
|
| 9 |
+
import time
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from typing import List, Optional
|
| 12 |
+
from contextlib import asynccontextmanager
|
| 13 |
+
|
| 14 |
+
from fastapi import FastAPI, HTTPException
|
| 15 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 16 |
+
from pydantic import BaseModel, Field
|
| 17 |
+
import chromadb
|
| 18 |
+
from sentence_transformers import SentenceTransformer
|
| 19 |
+
import google.generativeai as genai
|
| 20 |
+
|
| 21 |
+
# Setup logging
|
| 22 |
+
logging.basicConfig(level=logging.INFO)
|
| 23 |
+
logger = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
# Global variables
|
| 26 |
+
collection = None
|
| 27 |
+
embedding_model = None
|
| 28 |
+
gemini_model = None
|
| 29 |
+
safety_validator = None
|
| 30 |
+
|
| 31 |
+
# Pydantic models
|
| 32 |
+
class QueryRequest(BaseModel):
|
| 33 |
+
query: str = Field(..., min_length=5, max_length=500)
|
| 34 |
+
include_metadata: bool = Field(default=True)
|
| 35 |
+
|
| 36 |
+
class QueryResponse(BaseModel):
|
| 37 |
+
response: str
|
| 38 |
+
safety_score: int
|
| 39 |
+
confidence: str
|
| 40 |
+
knowledge_sources: int
|
| 41 |
+
top_similarity: float
|
| 42 |
+
warnings: List[str]
|
| 43 |
+
response_time: float
|
| 44 |
+
|
| 45 |
+
class MedicalSafetyValidator:
|
| 46 |
+
"""Medical safety validation system"""
|
| 47 |
+
|
| 48 |
+
def __init__(self):
|
| 49 |
+
self.emergency_keywords = [
|
| 50 |
+
'heart attack', 'chest pain', 'shortness of breath', 'stroke',
|
| 51 |
+
'severe pain', 'bleeding', 'unconscious', 'emergency', 'crushing pain'
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
+
def validate_response(self, response_text: str, user_query: str) -> dict:
|
| 55 |
+
"""Validate medical safety of AI response"""
|
| 56 |
+
safety_score = 85
|
| 57 |
+
warnings = []
|
| 58 |
+
|
| 59 |
+
# Check for emergency situations
|
| 60 |
+
if any(keyword in user_query.lower() for keyword in self.emergency_keywords):
|
| 61 |
+
if 'seek immediate medical attention' not in response_text.lower():
|
| 62 |
+
warnings.append("CRITICAL: Emergency situation detected")
|
| 63 |
+
safety_score -= 20
|
| 64 |
+
else:
|
| 65 |
+
safety_score += 10
|
| 66 |
+
|
| 67 |
+
# Check for professional consultation recommendation
|
| 68 |
+
consult_phrases = ['consult', 'doctor', 'physician', 'healthcare provider']
|
| 69 |
+
if any(phrase in response_text.lower() for phrase in consult_phrases):
|
| 70 |
+
safety_score += 10
|
| 71 |
+
else:
|
| 72 |
+
warnings.append("Added professional consultation recommendation")
|
| 73 |
+
safety_score -= 15
|
| 74 |
+
|
| 75 |
+
# Check response quality
|
| 76 |
+
if len(response_text) > 200:
|
| 77 |
+
safety_score += 5
|
| 78 |
+
|
| 79 |
+
# Check for dangerous statements
|
| 80 |
+
dangerous_phrases = ['you definitely have', 'this is certainly', 'never see a doctor']
|
| 81 |
+
if any(phrase in response_text.lower() for phrase in dangerous_phrases):
|
| 82 |
+
warnings.append("Contains potentially dangerous medical statements")
|
| 83 |
+
safety_score -= 25
|
| 84 |
+
|
| 85 |
+
safety_score = min(100, max(50, safety_score))
|
| 86 |
+
|
| 87 |
+
return {
|
| 88 |
+
'safety_score': safety_score,
|
| 89 |
+
'warnings': warnings,
|
| 90 |
+
'is_safe': safety_score >= 70
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
def add_safety_disclaimers(self, response_text: str, safety_check: dict) -> str:
|
| 94 |
+
"""Add medical disclaimers"""
|
| 95 |
+
disclaimers = "\n\nβ οΈ **MEDICAL DISCLAIMER**: Educational purposes only.\nπ¨ββοΈ **RECOMMENDATION**: Consult healthcare professionals."
|
| 96 |
+
|
| 97 |
+
if safety_check['safety_score'] < 80:
|
| 98 |
+
disclaimers += "\nπ¨ **IMPORTANT**: For severe symptoms, seek immediate medical attention."
|
| 99 |
+
|
| 100 |
+
return response_text + disclaimers
|
| 101 |
+
|
| 102 |
+
@asynccontextmanager
|
| 103 |
+
async def lifespan(app: FastAPI):
|
| 104 |
+
"""Initialize and cleanup application resources"""
|
| 105 |
+
global collection, embedding_model, gemini_model, safety_validator
|
| 106 |
+
|
| 107 |
+
logger.info("π« Starting CardioQA API...")
|
| 108 |
+
|
| 109 |
+
try:
|
| 110 |
+
# FIXED: Force ChromaDB to create new compatible database
|
| 111 |
+
possible_paths = [
|
| 112 |
+
"./chroma_db",
|
| 113 |
+
"chroma_db",
|
| 114 |
+
"/opt/render/project/src/chroma_db",
|
| 115 |
+
Path.cwd() / "chroma_db",
|
| 116 |
+
Path(__file__).parent.parent.parent / "chroma_db"
|
| 117 |
+
]
|
| 118 |
+
|
| 119 |
+
db_path = None
|
| 120 |
+
for path in possible_paths:
|
| 121 |
+
path_obj = Path(path)
|
| 122 |
+
logger.info(f"π Checking: {path_obj.absolute()}")
|
| 123 |
+
if path_obj.exists() and path_obj.is_dir():
|
| 124 |
+
db_path = str(path_obj)
|
| 125 |
+
logger.info(f"β
Found ChromaDB at: {db_path}")
|
| 126 |
+
break
|
| 127 |
+
|
| 128 |
+
if not db_path:
|
| 129 |
+
# Create new ChromaDB if not found
|
| 130 |
+
logger.info("π Creating new ChromaDB...")
|
| 131 |
+
db_path = "./chroma_db_render"
|
| 132 |
+
|
| 133 |
+
# Initialize new ChromaDB and recreate collection
|
| 134 |
+
client = chromadb.PersistentClient(path=db_path)
|
| 135 |
+
try:
|
| 136 |
+
collection = client.get_collection(name="cardiac_knowledge")
|
| 137 |
+
logger.info(f"β
Using existing collection: {collection.count()} documents")
|
| 138 |
+
except:
|
| 139 |
+
logger.info("Creating new collection with sample data...")
|
| 140 |
+
collection = client.create_collection(name="cardiac_knowledge")
|
| 141 |
+
|
| 142 |
+
# Add sample cardiac Q&A data for demo
|
| 143 |
+
sample_data = [
|
| 144 |
+
{
|
| 145 |
+
"question": "What are the symptoms of heart attack?",
|
| 146 |
+
"answer": "Common heart attack symptoms include chest pain or discomfort, shortness of breath, pain in arms/back/neck/jaw, cold sweat, nausea, and lightheadedness. Seek immediate medical attention if experiencing these symptoms.",
|
| 147 |
+
"qtype": "symptoms"
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"question": "How can I prevent heart disease?",
|
| 151 |
+
"answer": "Heart disease prevention includes regular exercise, healthy diet low in saturated fats, not smoking, limiting alcohol, managing stress, controlling blood pressure and cholesterol, and regular medical checkups.",
|
| 152 |
+
"qtype": "prevention"
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"question": "What causes high blood pressure?",
|
| 156 |
+
"answer": "High blood pressure can be caused by genetics, age, diet high in sodium, lack of exercise, obesity, excessive alcohol consumption, stress, and certain medical conditions. Regular monitoring is important.",
|
| 157 |
+
"qtype": "causes"
|
| 158 |
+
}
|
| 159 |
+
]
|
| 160 |
+
|
| 161 |
+
for i, item in enumerate(sample_data):
|
| 162 |
+
collection.add(
|
| 163 |
+
documents=[item["answer"]],
|
| 164 |
+
metadatas=[{
|
| 165 |
+
"question": item["question"],
|
| 166 |
+
"answer": item["answer"],
|
| 167 |
+
"qtype": item["qtype"]
|
| 168 |
+
}],
|
| 169 |
+
ids=[f"cardiac_{i}"]
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
logger.info(f"β
Created collection with {len(sample_data)} sample documents")
|
| 173 |
+
else:
|
| 174 |
+
# Try to use existing database
|
| 175 |
+
try:
|
| 176 |
+
client = chromadb.PersistentClient(path=db_path)
|
| 177 |
+
collection = client.get_collection(name="cardiac_knowledge")
|
| 178 |
+
logger.info(f"β
Loaded existing database: {collection.count()} documents")
|
| 179 |
+
except Exception as e:
|
| 180 |
+
logger.error(f"β ChromaDB compatibility issue: {e}")
|
| 181 |
+
# Fallback: create new database
|
| 182 |
+
logger.info("Creating fallback database...")
|
| 183 |
+
client = chromadb.PersistentClient(path="./chroma_db_fallback")
|
| 184 |
+
collection = client.create_collection(name="cardiac_knowledge")
|
| 185 |
+
# Add sample data (same as above)
|
| 186 |
+
sample_data = [
|
| 187 |
+
{
|
| 188 |
+
"question": "What are the symptoms of heart attack?",
|
| 189 |
+
"answer": "Common heart attack symptoms include chest pain or discomfort, shortness of breath, pain in arms/back/neck/jaw, cold sweat, nausea, and lightheadedness. Seek immediate medical attention.",
|
| 190 |
+
"qtype": "symptoms"
|
| 191 |
+
}
|
| 192 |
+
]
|
| 193 |
+
collection.add(
|
| 194 |
+
documents=[sample_data[0]["answer"]],
|
| 195 |
+
metadatas=[sample_data[0]],
|
| 196 |
+
ids=["cardiac_0"]
|
| 197 |
+
)
|
| 198 |
+
logger.info("β
Created fallback database")
|
| 199 |
+
|
| 200 |
+
# Load embedding model
|
| 201 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 202 |
+
logger.info("β
Loaded embedding model")
|
| 203 |
+
|
| 204 |
+
# Configure Gemini API
|
| 205 |
+
api_key = os.getenv("GEMINI_API_KEY")
|
| 206 |
+
if not api_key:
|
| 207 |
+
raise Exception("β GEMINI_API_KEY environment variable not set")
|
| 208 |
+
|
| 209 |
+
genai.configure(api_key=api_key)
|
| 210 |
+
gemini_model = genai.GenerativeModel('gemini-2.0-flash')
|
| 211 |
+
|
| 212 |
+
# Test Gemini connection
|
| 213 |
+
test_response = gemini_model.generate_content("Say 'CardioQA ready!'")
|
| 214 |
+
logger.info(f"β
Gemini test: {test_response.text}")
|
| 215 |
+
|
| 216 |
+
# Initialize safety validator
|
| 217 |
+
safety_validator = MedicalSafetyValidator()
|
| 218 |
+
logger.info("β
Safety validator ready")
|
| 219 |
+
|
| 220 |
+
logger.info("π CardioQA API fully initialized!")
|
| 221 |
+
|
| 222 |
+
yield
|
| 223 |
+
|
| 224 |
+
except Exception as e:
|
| 225 |
+
logger.error(f"β Startup failed: {str(e)}")
|
| 226 |
+
raise
|
| 227 |
+
|
| 228 |
+
# Cleanup
|
| 229 |
+
logger.info("π Shutting down CardioQA API...")
|
| 230 |
+
|
| 231 |
+
# Initialize FastAPI with lifespan
|
| 232 |
+
app = FastAPI(
|
| 233 |
+
title="CardioQA API",
|
| 234 |
+
description="AI-powered cardiac diagnostic assistant with RAG",
|
| 235 |
+
version="1.0.0",
|
| 236 |
+
lifespan=lifespan
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
# Add CORS middleware
|
| 240 |
+
app.add_middleware(
|
| 241 |
+
CORSMiddleware,
|
| 242 |
+
allow_origins=["*"],
|
| 243 |
+
allow_credentials=True,
|
| 244 |
+
allow_methods=["GET", "POST"],
|
| 245 |
+
allow_headers=["*"],
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
@app.get("/")
|
| 249 |
+
async def root():
|
| 250 |
+
"""API root endpoint"""
|
| 251 |
+
return {
|
| 252 |
+
"message": "CardioQA API - AI-Powered Cardiac Diagnostic Assistant",
|
| 253 |
+
"version": "1.0.0",
|
| 254 |
+
"status": "running",
|
| 255 |
+
"endpoints": {
|
| 256 |
+
"health": "/health",
|
| 257 |
+
"query": "/query",
|
| 258 |
+
"docs": "/docs",
|
| 259 |
+
"stats": "/stats"
|
| 260 |
+
}
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
@app.get("/health")
|
| 264 |
+
async def health_check():
|
| 265 |
+
"""Health check endpoint"""
|
| 266 |
+
try:
|
| 267 |
+
db_count = collection.count() if collection else 0
|
| 268 |
+
model_status = "ready" if gemini_model else "not loaded"
|
| 269 |
+
|
| 270 |
+
return {
|
| 271 |
+
"status": "healthy",
|
| 272 |
+
"database_count": db_count,
|
| 273 |
+
"model_status": model_status,
|
| 274 |
+
"api_version": "1.0.0",
|
| 275 |
+
"deployment": "render-production"
|
| 276 |
+
}
|
| 277 |
+
except Exception as e:
|
| 278 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 279 |
+
|
| 280 |
+
@app.post("/query", response_model=QueryResponse)
|
| 281 |
+
async def query_cardioqa(request: QueryRequest):
|
| 282 |
+
"""Main CardioQA query endpoint"""
|
| 283 |
+
start_time = time.time()
|
| 284 |
+
|
| 285 |
+
try:
|
| 286 |
+
if not collection or not gemini_model or not safety_validator:
|
| 287 |
+
raise HTTPException(status_code=503, detail="System not fully initialized")
|
| 288 |
+
|
| 289 |
+
logger.info(f"Processing query: {request.query[:100]}...")
|
| 290 |
+
|
| 291 |
+
# Search knowledge base
|
| 292 |
+
results = collection.query(
|
| 293 |
+
query_texts=[request.query],
|
| 294 |
+
n_results=3
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
if not results['documents'][0]:
|
| 298 |
+
raise HTTPException(status_code=404, detail="No relevant cardiac information found")
|
| 299 |
+
|
| 300 |
+
# Format knowledge context
|
| 301 |
+
knowledge_context = []
|
| 302 |
+
for doc, metadata, distance in zip(
|
| 303 |
+
results['documents'][0],
|
| 304 |
+
results['metadatas'][0],
|
| 305 |
+
results['distances'][0]
|
| 306 |
+
):
|
| 307 |
+
knowledge_context.append({
|
| 308 |
+
'question': metadata['question'],
|
| 309 |
+
'answer': metadata['answer'],
|
| 310 |
+
'similarity': 1 - distance
|
| 311 |
+
})
|
| 312 |
+
|
| 313 |
+
# Create medical prompt
|
| 314 |
+
context_text = f"Medical Evidence:\nQ: {knowledge_context[0]['question']}\nA: {knowledge_context[0]['answer']}"
|
| 315 |
+
|
| 316 |
+
prompt = f"""You are CardioQA, a specialized cardiac health assistant.
|
| 317 |
+
|
| 318 |
+
MEDICAL RESPONSE RULES:
|
| 319 |
+
- Never provide definitive diagnoses
|
| 320 |
+
- Always recommend consulting healthcare professionals
|
| 321 |
+
- Use **bold** for important medical points
|
| 322 |
+
- Be educational and evidence-based
|
| 323 |
+
- Include appropriate medical caution
|
| 324 |
+
|
| 325 |
+
USER QUESTION: {request.query}
|
| 326 |
+
|
| 327 |
+
{context_text}
|
| 328 |
+
|
| 329 |
+
Provide a helpful, evidence-based response with proper **bold** formatting:"""
|
| 330 |
+
|
| 331 |
+
# Generate AI response
|
| 332 |
+
response = gemini_model.generate_content(
|
| 333 |
+
prompt,
|
| 334 |
+
generation_config={
|
| 335 |
+
'temperature': 0.1,
|
| 336 |
+
'max_output_tokens': 800,
|
| 337 |
+
}
|
| 338 |
+
)
|
| 339 |
+
ai_response = response.text
|
| 340 |
+
|
| 341 |
+
# Apply safety validation
|
| 342 |
+
safety_check = safety_validator.validate_response(ai_response, request.query)
|
| 343 |
+
safe_response = safety_validator.add_safety_disclaimers(ai_response, safety_check)
|
| 344 |
+
|
| 345 |
+
# Calculate confidence level
|
| 346 |
+
similarity = knowledge_context[0]['similarity']
|
| 347 |
+
if similarity > 0.6:
|
| 348 |
+
confidence = 'High'
|
| 349 |
+
elif similarity > 0.4:
|
| 350 |
+
confidence = 'Medium'
|
| 351 |
+
elif similarity > 0.2:
|
| 352 |
+
confidence = 'Low'
|
| 353 |
+
else:
|
| 354 |
+
confidence = 'Very Low'
|
| 355 |
+
|
| 356 |
+
response_time = time.time() - start_time
|
| 357 |
+
|
| 358 |
+
return QueryResponse(
|
| 359 |
+
response=safe_response,
|
| 360 |
+
safety_score=safety_check['safety_score'],
|
| 361 |
+
confidence=confidence,
|
| 362 |
+
knowledge_sources=len(knowledge_context),
|
| 363 |
+
top_similarity=knowledge_context[0]['similarity'],
|
| 364 |
+
warnings=safety_check['warnings'],
|
| 365 |
+
response_time=round(response_time, 2)
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
except HTTPException:
|
| 369 |
+
raise
|
| 370 |
+
except Exception as e:
|
| 371 |
+
logger.error(f"Query processing error: {str(e)}")
|
| 372 |
+
raise HTTPException(status_code=500, detail=f"Processing error: {str(e)}")
|
| 373 |
+
|
| 374 |
+
@app.get("/stats")
|
| 375 |
+
async def get_system_stats():
|
| 376 |
+
"""System statistics endpoint"""
|
| 377 |
+
try:
|
| 378 |
+
return {
|
| 379 |
+
"total_documents": collection.count() if collection else 0,
|
| 380 |
+
"embedding_model": "all-MiniLM-L6-v2",
|
| 381 |
+
"llm_model": "gemini-2.0-flash",
|
| 382 |
+
"specialty": "cardiology",
|
| 383 |
+
"safety_features": [
|
| 384 |
+
"emergency_detection",
|
| 385 |
+
"professional_consultation",
|
| 386 |
+
"medical_disclaimers",
|
| 387 |
+
"confidence_scoring"
|
| 388 |
+
],
|
| 389 |
+
"deployment": "render-production",
|
| 390 |
+
"chromadb_version": "compatible"
|
| 391 |
+
}
|
| 392 |
+
except Exception as e:
|
| 393 |
+
raise HTTPException(status_code=500, detail=str(e))
|
| 394 |
+
|
| 395 |
+
# FIXED: Proper port binding for Render deployment
|
| 396 |
+
if __name__ == "__main__":
|
| 397 |
+
import uvicorn
|
| 398 |
+
# Railway uses PORT environment variable
|
| 399 |
+
port = int(os.environ.get("PORT", 7860))
|
| 400 |
+
logger.info(f"π Starting CardioQA on port {port}")
|
| 401 |
+
uvicorn.run(
|
| 402 |
+
app,
|
| 403 |
+
host="0.0.0.0",
|
| 404 |
+
port=port,
|
| 405 |
+
log_level="info"
|
| 406 |
+
)
|
| 407 |
+
|