Spaces:
Paused
Paused
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextModel, CLIPTokenizer | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.models import AutoencoderKL, UNet3DConditionModel | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import ( | |
| logging, | |
| replace_example_docstring) | |
| from diffusers.pipelines.text_to_video_synthesis import TextToVideoSDPipelineOutput | |
| TAU_2 = 15 | |
| TAU_1 = 10 | |
| def init_attention_params(unet, num_frames, lambda_=None, bs=None): | |
| for name, module in unet.named_modules(): | |
| module_name = type(module).__name__ | |
| if module_name == "Attention": | |
| module.LAMBDA = lambda_ | |
| module.bs = bs | |
| module.num_frames = num_frames | |
| module.last_attn_slice_weights = 1 | |
| def init_attention_func(unet): | |
| # ORIGINAL SOURCE CODE: https://github.com/huggingface/diffusers/blob/91ddd2a25b848df0fa1262d4f1cd98c7ccb87750/src/diffusers/models/attention.py#L276 | |
| # Updated source code: https://github.com/huggingface/diffusers/blob/50296739878f3e17b2d25d45ef626318b44440b9/src/diffusers/models/attention_processor.py#L571 | |
| def get_attention_scores( | |
| self, query, key, attention_mask = None): | |
| r""" | |
| Compute the attention scores. | |
| Args: | |
| query (`torch.Tensor`): The query tensor. | |
| key (`torch.Tensor`): The key tensor. | |
| attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. | |
| Returns: | |
| `torch.Tensor`: The attention probabilities/scores. | |
| """ | |
| q_old = query.clone() | |
| k_old = key.clone() | |
| if self.use_last_attn_slice: | |
| if self.last_attn_slice is not None: | |
| query_list = self.last_attn_slice[0] | |
| key_list = self.last_attn_slice[1] | |
| if query.shape[1] == self.num_frames and query.shape == key.shape: | |
| key1 = key.clone() | |
| key1[:,:1,:key_list.shape[2]] = key_list[:,:1] | |
| if q_old.shape == k_old.shape and q_old.shape[1]!=self.num_frames: | |
| batch_dim = query_list.shape[0] // self.bs | |
| all_dim = query.shape[0] // self.bs | |
| for i in range(self.bs): | |
| query[i*all_dim:(i*all_dim) + batch_dim,:query_list.shape[1],:query_list.shape[2]] = query_list[i*batch_dim:(i+1)*batch_dim] | |
| dtype = query.dtype | |
| if self.upcast_attention: | |
| query = query.float() | |
| key = key.float() | |
| if attention_mask is None: | |
| baddbmm_input = torch.empty( | |
| query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device | |
| ) | |
| beta = 0 | |
| else: | |
| baddbmm_input = attention_mask | |
| beta = 1 | |
| attention_scores = torch.baddbmm( | |
| baddbmm_input, | |
| query, | |
| key.transpose(-1, -2), | |
| beta=beta, | |
| alpha=self.scale, | |
| ) | |
| if query.shape[1] == self.num_frames and query.shape == key.shape and self.use_last_attn_slice: | |
| attention_scores1 = torch.baddbmm( | |
| baddbmm_input, | |
| query, | |
| key1.transpose(-1, -2), | |
| beta=beta, | |
| alpha=self.scale, | |
| ) | |
| dynamic_lambda = torch.tensor([1 + self.LAMBDA * (i/50) for i in range(self.num_frames)]).to(dtype).cuda() | |
| attention_scores[:,:self.num_frames,0] = attention_scores1[:,:self.num_frames,0] * dynamic_lambda | |
| del baddbmm_input | |
| if self.upcast_softmax: | |
| attention_scores = attention_scores.float() | |
| attention_probs = attention_scores.softmax(dim=-1) | |
| if self.use_last_attn_slice: | |
| self.use_last_attn_slice = False | |
| if self.save_last_attn_slice: | |
| self.last_attn_slice = [ | |
| query, | |
| key, | |
| ] | |
| self.save_last_attn_slice = False | |
| del attention_scores | |
| attention_probs = attention_probs.to(dtype) | |
| return attention_probs | |
| for _, module in unet.named_modules(): | |
| module_name = type(module).__name__ | |
| if module_name == "Attention": | |
| module.last_attn_slice = None | |
| module.use_last_attn_slice = False | |
| module.save_last_attn_slice = False | |
| module.LAMBDA = 0 | |
| module.get_attention_scores = get_attention_scores.__get__(module, type(module)) | |
| module.bs = 0 | |
| module.num_frames = None | |
| return unet | |
| def use_last_self_attention(unet, use=True): | |
| for name, module in unet.named_modules(): | |
| module_name = type(module).__name__ | |
| if module_name == "Attention" and "attn1" in name: | |
| module.use_last_attn_slice = use | |
| def save_last_self_attention(unet, save=True): | |
| for name, module in unet.named_modules(): | |
| module_name = type(module).__name__ | |
| if module_name == "Attention" and "attn1" in name: | |
| module.save_last_attn_slice = save | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import TextToVideoSDPipeline | |
| >>> from diffusers.utils import export_to_video | |
| >>> pipe = TextToVideoSDPipeline.from_pretrained( | |
| ... "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16" | |
| ... ) | |
| >>> pipe.enable_model_cpu_offload() | |
| >>> prompt = "Spiderman is surfing" | |
| >>> video_frames = pipe(prompt).frames[0] | |
| >>> video_path = export_to_video(video_frames) | |
| >>> video_path | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid | |
| def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"): | |
| batch_size, channels, num_frames, height, width = video.shape | |
| outputs = [] | |
| for batch_idx in range(batch_size): | |
| batch_vid = video[batch_idx].permute(1, 0, 2, 3) | |
| batch_output = processor.postprocess(batch_vid, output_type) | |
| outputs.append(batch_output) | |
| if output_type == "np": | |
| outputs = np.stack(outputs) | |
| elif output_type == "pt": | |
| outputs = torch.stack(outputs) | |
| elif not output_type == "pil": | |
| raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']") | |
| return outputs | |
| from diffusers import TextToVideoSDPipeline | |
| class TextToVideoSDPipelineModded(TextToVideoSDPipeline): | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet3DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| ): | |
| super().__init__(vae, text_encoder, tokenizer, unet, scheduler) | |
| def call_network(self, | |
| negative_prompt_embeds, | |
| prompt_embeds, | |
| latents, | |
| inv_latents, | |
| t, | |
| i, | |
| null_embeds, | |
| cross_attention_kwargs, | |
| extra_step_kwargs, | |
| do_classifier_free_guidance, | |
| guidance_scale, | |
| ): | |
| inv_latent_model_input = inv_latents | |
| inv_latent_model_input = self.scheduler.scale_model_input(inv_latent_model_input, t) | |
| latent_model_input = latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_null_pred_uncond = self.unet( | |
| inv_latent_model_input, | |
| t, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| if i<=TAU_2: | |
| save_last_self_attention(self.unet) | |
| noise_null_pred = self.unet( | |
| inv_latent_model_input, | |
| t, | |
| encoder_hidden_states=null_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| if do_classifier_free_guidance: | |
| noise_null_pred = noise_null_pred_uncond + guidance_scale * (noise_null_pred - noise_null_pred_uncond) | |
| bsz, channel, frames, width, height = inv_latents.shape | |
| inv_latents = inv_latents.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width) | |
| noise_null_pred = noise_null_pred.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width) | |
| inv_latents = self.scheduler.step(noise_null_pred, t, inv_latents, **extra_step_kwargs).prev_sample | |
| inv_latents = inv_latents[None, :].reshape((bsz, frames , -1) + inv_latents.shape[2:]).permute(0, 2, 1, 3, 4) | |
| use_last_self_attention(self.unet) | |
| else: | |
| noise_null_pred = None | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, # For unconditional guidance | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| use_last_self_attention(self.unet, False) | |
| if do_classifier_free_guidance: | |
| noise_pred_text = noise_pred | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # reshape latents | |
| bsz, channel, frames, width, height = latents.shape | |
| latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) | |
| noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # reshape latents back | |
| latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4) | |
| return { | |
| "latents": latents, | |
| "inv_latents": inv_latents, | |
| "noise_pred": noise_pred, | |
| "noise_null_pred": noise_null_pred, | |
| } | |
| def optimize_latents(self, latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds): | |
| inv_scaled = self.scheduler.scale_model_input(inv_latents, t) | |
| noise_null_pred = self.unet( | |
| inv_scaled[:,:,0:1,:,:], | |
| t, | |
| encoder_hidden_states=null_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| with torch.enable_grad(): | |
| latent_train = latents[:,:,1:,:,:].clone().detach().requires_grad_(True) | |
| optimizer = torch.optim.Adam([latent_train], lr=1e-3) | |
| for j in range(10): | |
| latent_in = torch.cat([inv_latents[:,:,0:1,:,:].detach(), latent_train], dim=2) | |
| latent_input_unet = self.scheduler.scale_model_input(latent_in, t) | |
| noise_pred = self.unet( | |
| latent_input_unet, | |
| t, | |
| encoder_hidden_states=prompt_embeds, # For unconditional guidance | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| loss = torch.nn.functional.mse_loss(noise_pred[:,:,0,:,:], noise_null_pred[:,:,0,:,:]) | |
| loss.backward() | |
| optimizer.step() | |
| optimizer.zero_grad() | |
| print("Iteration {} Subiteration {} Loss {} ".format(i, j, loss.item())) | |
| latents = latent_in.detach() | |
| return latents | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_frames: int = 16, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 9.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| inv_latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "np", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| clip_skip: Optional[int] = None, | |
| lambda_ = 0.5, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated video. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated video. | |
| num_frames (`int`, *optional*, defaults to 16): | |
| The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds | |
| amounts to 2 seconds of video. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality videos at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. Latents should be of shape | |
| `(batch_size, num_channel, num_frames, height, width)`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"np"`): | |
| The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead | |
| of a plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| Examples: | |
| Returns: | |
| [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is | |
| returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| num_images_per_prompt = 1 | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds | |
| ) | |
| # # 2. Define call parameters | |
| # if prompt is not None and isinstance(prompt, str): | |
| # batch_size = 1 | |
| # elif prompt is not None and isinstance(prompt, list): | |
| # batch_size = len(prompt) | |
| # else: | |
| # batch_size = prompt_embeds.shape[0] | |
| batch_size = inv_latents.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| ) | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| [prompt] * batch_size, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| [negative_prompt] * batch_size if negative_prompt is not None else None, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=clip_skip, | |
| ) | |
| null_embeds, negative_prompt_embeds = self.encode_prompt( | |
| [""] * batch_size, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| [negative_prompt] * batch_size if negative_prompt is not None else None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=clip_skip, | |
| ) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| num_frames, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| inv_latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| num_frames, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| inv_latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| init_attention_func(self.unet) | |
| print("Setup for Current Run") | |
| print("----------------------") | |
| print("Prompt ", prompt) | |
| print("Batch size ", batch_size) | |
| print("Num frames ", latents.shape[2]) | |
| print("Lambda ", lambda_) | |
| init_attention_params(self.unet, num_frames=latents.shape[2], lambda_=lambda_, bs = batch_size) | |
| iters_to_alter = [i for i in range(0, TAU_1)] | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| mask_in = torch.zeros(latents.shape).to(dtype=latents.dtype, device=latents.device) | |
| mask_in[:, :, 0, :, :] = 1 | |
| assert latents.shape[0] == inv_latents.shape[0], "Latents and Inverse Latents should have the same batch but got {} and {}".format(latents.shape[0], inv_latents.shape[0]) | |
| inv_latents = inv_latents.repeat(1,1,num_frames,1,1) | |
| latents = inv_latents * mask_in + latents * (1-mask_in) | |
| for i, t in enumerate(timesteps): | |
| curr_copy = max(1,num_frames - i) | |
| inv_latents = inv_latents[:,:,:curr_copy, :, : ] | |
| if i in iters_to_alter: | |
| latents = self.optimize_latents(latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds) | |
| output_dict = self.call_network( | |
| negative_prompt_embeds, | |
| prompt_embeds, | |
| latents, | |
| inv_latents, | |
| t, | |
| i, | |
| null_embeds, | |
| cross_attention_kwargs, | |
| extra_step_kwargs, | |
| do_classifier_free_guidance, | |
| guidance_scale, | |
| ) | |
| latents = output_dict["latents"] | |
| inv_latents = output_dict["inv_latents"] | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| # 8. Post processing | |
| if output_type == "latent": | |
| video = latents | |
| else: | |
| video_tensor = self.decode_latents(latents) | |
| video = tensor2vid(video_tensor, self.image_processor, output_type) | |
| # 9. Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (video,) | |
| return TextToVideoSDPipelineOutput(frames=video) |