Spaces:
Runtime error
Runtime error
Virtual-Try-On
/
preprocess
/humanparsing
/mhp_extension
/detectron2
/tools
/deploy
/caffe2_converter.py
| #!/usr/bin/env python | |
| # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
| import argparse | |
| import os | |
| import onnx | |
| import torch | |
| from detectron2.checkpoint import DetectionCheckpointer | |
| from detectron2.config import get_cfg | |
| from detectron2.data import build_detection_test_loader | |
| from detectron2.evaluation import COCOEvaluator, inference_on_dataset, print_csv_format | |
| from detectron2.export import Caffe2Tracer, add_export_config | |
| from detectron2.modeling import build_model | |
| from detectron2.utils.logger import setup_logger | |
| def setup_cfg(args): | |
| cfg = get_cfg() | |
| # cuda context is initialized before creating dataloader, so we don't fork anymore | |
| cfg.DATALOADER.NUM_WORKERS = 0 | |
| cfg = add_export_config(cfg) | |
| cfg.merge_from_file(args.config_file) | |
| cfg.merge_from_list(args.opts) | |
| cfg.freeze() | |
| if cfg.MODEL.DEVICE != "cpu": | |
| TORCH_VERSION = tuple(int(x) for x in torch.__version__.split(".")[:2]) | |
| assert TORCH_VERSION >= (1, 5), "PyTorch>=1.5 required for GPU conversion!" | |
| return cfg | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser(description="Convert a model using caffe2 tracing.") | |
| parser.add_argument( | |
| "--format", | |
| choices=["caffe2", "onnx", "torchscript"], | |
| help="output format", | |
| default="caffe2", | |
| ) | |
| parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file") | |
| parser.add_argument("--run-eval", action="store_true") | |
| parser.add_argument("--output", help="output directory for the converted model") | |
| parser.add_argument( | |
| "opts", | |
| help="Modify config options using the command-line", | |
| default=None, | |
| nargs=argparse.REMAINDER, | |
| ) | |
| args = parser.parse_args() | |
| logger = setup_logger() | |
| logger.info("Command line arguments: " + str(args)) | |
| os.makedirs(args.output, exist_ok=True) | |
| cfg = setup_cfg(args) | |
| # create a torch model | |
| torch_model = build_model(cfg) | |
| DetectionCheckpointer(torch_model).resume_or_load(cfg.MODEL.WEIGHTS) | |
| # get a sample data | |
| data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0]) | |
| first_batch = next(iter(data_loader)) | |
| # convert and save caffe2 model | |
| tracer = Caffe2Tracer(cfg, torch_model, first_batch) | |
| if args.format == "caffe2": | |
| caffe2_model = tracer.export_caffe2() | |
| caffe2_model.save_protobuf(args.output) | |
| # draw the caffe2 graph | |
| caffe2_model.save_graph(os.path.join(args.output, "model.svg"), inputs=first_batch) | |
| elif args.format == "onnx": | |
| onnx_model = tracer.export_onnx() | |
| onnx.save(onnx_model, os.path.join(args.output, "model.onnx")) | |
| elif args.format == "torchscript": | |
| script_model = tracer.export_torchscript() | |
| script_model.save(os.path.join(args.output, "model.ts")) | |
| # Recursively print IR of all modules | |
| with open(os.path.join(args.output, "model_ts_IR.txt"), "w") as f: | |
| try: | |
| f.write(script_model._actual_script_module._c.dump_to_str(True, False, False)) | |
| except AttributeError: | |
| pass | |
| # Print IR of the entire graph (all submodules inlined) | |
| with open(os.path.join(args.output, "model_ts_IR_inlined.txt"), "w") as f: | |
| f.write(str(script_model.inlined_graph)) | |
| # Print the model structure in pytorch style | |
| with open(os.path.join(args.output, "model.txt"), "w") as f: | |
| f.write(str(script_model)) | |
| # run evaluation with the converted model | |
| if args.run_eval: | |
| assert args.format == "caffe2", "Python inference in other format is not yet supported." | |
| dataset = cfg.DATASETS.TEST[0] | |
| data_loader = build_detection_test_loader(cfg, dataset) | |
| # NOTE: hard-coded evaluator. change to the evaluator for your dataset | |
| evaluator = COCOEvaluator(dataset, cfg, True, args.output) | |
| metrics = inference_on_dataset(caffe2_model, data_loader, evaluator) | |
| print_csv_format(metrics) | |