Spaces:
Runtime error
Runtime error
Commit
·
204969e
1
Parent(s):
945769d
add files
Browse files- chinese.jpg +0 -0
- ezocr/build/lib/easyocrlite/__init__.py +1 -0
- ezocr/build/lib/easyocrlite/reader.py +272 -0
- ezocr/build/lib/easyocrlite/types.py +5 -0
- lihe.png +0 -0
- paibian.jpeg +0 -0
- shupai.png +0 -0
- zuowen.jpg +0 -0
chinese.jpg
ADDED
|
ezocr/build/lib/easyocrlite/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from easyocrlite.reader import ReaderLite
|
ezocr/build/lib/easyocrlite/reader.py
ADDED
|
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
import logging
|
| 4 |
+
import os
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from typing import Tuple
|
| 7 |
+
|
| 8 |
+
import cv2
|
| 9 |
+
import numpy as np
|
| 10 |
+
import torch
|
| 11 |
+
from PIL import Image, ImageEnhance
|
| 12 |
+
|
| 13 |
+
from easyocrlite.model import CRAFT
|
| 14 |
+
|
| 15 |
+
from easyocrlite.utils.download_utils import prepare_model
|
| 16 |
+
from easyocrlite.utils.image_utils import (
|
| 17 |
+
adjust_result_coordinates,
|
| 18 |
+
boxed_transform,
|
| 19 |
+
normalize_mean_variance,
|
| 20 |
+
resize_aspect_ratio,
|
| 21 |
+
)
|
| 22 |
+
from easyocrlite.utils.detect_utils import (
|
| 23 |
+
extract_boxes,
|
| 24 |
+
extract_regions_from_boxes,
|
| 25 |
+
box_expand,
|
| 26 |
+
greedy_merge,
|
| 27 |
+
)
|
| 28 |
+
from easyocrlite.types import BoxTuple, RegionTuple
|
| 29 |
+
import easyocrlite.utils.utils as utils
|
| 30 |
+
|
| 31 |
+
logger = logging.getLogger(__name__)
|
| 32 |
+
|
| 33 |
+
MODULE_PATH = (
|
| 34 |
+
os.environ.get("EASYOCR_MODULE_PATH")
|
| 35 |
+
or os.environ.get("MODULE_PATH")
|
| 36 |
+
or os.path.expanduser("~/.EasyOCR/")
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
class ReaderLite(object):
|
| 41 |
+
def __init__(
|
| 42 |
+
self,
|
| 43 |
+
gpu=True,
|
| 44 |
+
model_storage_directory=None,
|
| 45 |
+
download_enabled=True,
|
| 46 |
+
verbose=True,
|
| 47 |
+
quantize=True,
|
| 48 |
+
cudnn_benchmark=False,
|
| 49 |
+
):
|
| 50 |
+
|
| 51 |
+
self.verbose = verbose
|
| 52 |
+
|
| 53 |
+
model_storage_directory = Path(
|
| 54 |
+
model_storage_directory
|
| 55 |
+
if model_storage_directory
|
| 56 |
+
else MODULE_PATH + "/model"
|
| 57 |
+
)
|
| 58 |
+
self.detector_path = prepare_model(
|
| 59 |
+
model_storage_directory, download_enabled, verbose
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
self.quantize = quantize
|
| 63 |
+
self.cudnn_benchmark = cudnn_benchmark
|
| 64 |
+
if gpu is False:
|
| 65 |
+
self.device = "cpu"
|
| 66 |
+
if verbose:
|
| 67 |
+
logger.warning(
|
| 68 |
+
"Using CPU. Note: This module is much faster with a GPU."
|
| 69 |
+
)
|
| 70 |
+
elif not torch.cuda.is_available():
|
| 71 |
+
self.device = "cpu"
|
| 72 |
+
if verbose:
|
| 73 |
+
logger.warning(
|
| 74 |
+
"CUDA not available - defaulting to CPU. Note: This module is much faster with a GPU."
|
| 75 |
+
)
|
| 76 |
+
elif gpu is True:
|
| 77 |
+
self.device = "cuda"
|
| 78 |
+
else:
|
| 79 |
+
self.device = gpu
|
| 80 |
+
|
| 81 |
+
self.detector = CRAFT()
|
| 82 |
+
|
| 83 |
+
state_dict = torch.load(self.detector_path, map_location=self.device)
|
| 84 |
+
if list(state_dict.keys())[0].startswith("module"):
|
| 85 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
| 86 |
+
|
| 87 |
+
self.detector.load_state_dict(state_dict)
|
| 88 |
+
|
| 89 |
+
if self.device == "cpu":
|
| 90 |
+
if self.quantize:
|
| 91 |
+
try:
|
| 92 |
+
torch.quantization.quantize_dynamic(
|
| 93 |
+
self.detector, dtype=torch.qint8, inplace=True
|
| 94 |
+
)
|
| 95 |
+
except:
|
| 96 |
+
pass
|
| 97 |
+
else:
|
| 98 |
+
self.detector = torch.nn.DataParallel(self.detector).to(self.device)
|
| 99 |
+
import torch.backends.cudnn as cudnn
|
| 100 |
+
|
| 101 |
+
cudnn.benchmark = self.cudnn_benchmark
|
| 102 |
+
|
| 103 |
+
self.detector.eval()
|
| 104 |
+
|
| 105 |
+
def process(
|
| 106 |
+
self,
|
| 107 |
+
image_path: str,
|
| 108 |
+
max_size: int = 960,
|
| 109 |
+
expand_ratio: float = 1.0,
|
| 110 |
+
sharp: float = 1.0,
|
| 111 |
+
contrast: float = 1.0,
|
| 112 |
+
text_confidence: float = 0.7,
|
| 113 |
+
text_threshold: float = 0.4,
|
| 114 |
+
link_threshold: float = 0.4,
|
| 115 |
+
slope_ths: float = 0.1,
|
| 116 |
+
ratio_ths: float = 0.5,
|
| 117 |
+
center_ths: float = 0.5,
|
| 118 |
+
dim_ths: float = 0.5,
|
| 119 |
+
space_ths: float = 1.0,
|
| 120 |
+
add_margin: float = 0.1,
|
| 121 |
+
min_size: float = 0.01,
|
| 122 |
+
) -> Tuple[BoxTuple, list[np.ndarray]]:
|
| 123 |
+
|
| 124 |
+
image = Image.open(image_path).convert('RGB')
|
| 125 |
+
|
| 126 |
+
tensor, inverse_ratio = self.preprocess(
|
| 127 |
+
image, max_size, expand_ratio, sharp, contrast
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
scores = self.forward_net(tensor)
|
| 131 |
+
|
| 132 |
+
boxes = self.detect(scores, text_confidence, text_threshold, link_threshold)
|
| 133 |
+
|
| 134 |
+
image = np.array(image)
|
| 135 |
+
region_list, box_list = self.postprocess(
|
| 136 |
+
image,
|
| 137 |
+
boxes,
|
| 138 |
+
inverse_ratio,
|
| 139 |
+
slope_ths,
|
| 140 |
+
ratio_ths,
|
| 141 |
+
center_ths,
|
| 142 |
+
dim_ths,
|
| 143 |
+
space_ths,
|
| 144 |
+
add_margin,
|
| 145 |
+
min_size,
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# get cropped image
|
| 149 |
+
image_list = []
|
| 150 |
+
for region in region_list:
|
| 151 |
+
x_min, x_max, y_min, y_max = region
|
| 152 |
+
crop_img = image[y_min:y_max, x_min:x_max, :]
|
| 153 |
+
image_list.append(
|
| 154 |
+
(
|
| 155 |
+
((x_min, y_min), (x_max, y_min), (x_max, y_max), (x_min, y_max)),
|
| 156 |
+
crop_img,
|
| 157 |
+
)
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
for box in box_list:
|
| 161 |
+
transformed_img = boxed_transform(image, np.array(box, dtype="float32"))
|
| 162 |
+
image_list.append((box, transformed_img))
|
| 163 |
+
|
| 164 |
+
# sort by top left point
|
| 165 |
+
image_list = sorted(image_list, key=lambda x: (x[0][0][1], x[0][0][0]))
|
| 166 |
+
|
| 167 |
+
return image_list
|
| 168 |
+
|
| 169 |
+
def preprocess(
|
| 170 |
+
self,
|
| 171 |
+
image: Image.Image,
|
| 172 |
+
max_size: int,
|
| 173 |
+
expand_ratio: float = 1.0,
|
| 174 |
+
sharp: float = 1.0,
|
| 175 |
+
contrast: float = 1.0,
|
| 176 |
+
) -> torch.Tensor:
|
| 177 |
+
if sharp != 1:
|
| 178 |
+
enhancer = ImageEnhance.Sharpness(image)
|
| 179 |
+
image = enhancer.enhance(sharp)
|
| 180 |
+
if contrast != 1:
|
| 181 |
+
enhancer = ImageEnhance.Contrast(image)
|
| 182 |
+
image = enhancer.enhance(contrast)
|
| 183 |
+
|
| 184 |
+
image = np.array(image)
|
| 185 |
+
|
| 186 |
+
image, target_ratio = resize_aspect_ratio(
|
| 187 |
+
image, max_size, interpolation=cv2.INTER_LINEAR, expand_ratio=expand_ratio
|
| 188 |
+
)
|
| 189 |
+
inverse_ratio = 1 / target_ratio
|
| 190 |
+
|
| 191 |
+
x = np.transpose(normalize_mean_variance(image), (2, 0, 1))
|
| 192 |
+
|
| 193 |
+
x = torch.tensor(np.array([x]), device=self.device)
|
| 194 |
+
|
| 195 |
+
return x, inverse_ratio
|
| 196 |
+
|
| 197 |
+
@torch.no_grad()
|
| 198 |
+
def forward_net(self, tensor: torch.Tensor) -> torch.Tensor:
|
| 199 |
+
scores, feature = self.detector(tensor)
|
| 200 |
+
return scores[0]
|
| 201 |
+
|
| 202 |
+
def detect(
|
| 203 |
+
self,
|
| 204 |
+
scores: torch.Tensor,
|
| 205 |
+
text_confidence: float = 0.7,
|
| 206 |
+
text_threshold: float = 0.4,
|
| 207 |
+
link_threshold: float = 0.4,
|
| 208 |
+
) -> list[BoxTuple]:
|
| 209 |
+
# make score and link map
|
| 210 |
+
score_text = scores[:, :, 0].cpu().data.numpy()
|
| 211 |
+
score_link = scores[:, :, 1].cpu().data.numpy()
|
| 212 |
+
# extract box
|
| 213 |
+
boxes, _ = extract_boxes(
|
| 214 |
+
score_text, score_link, text_confidence, text_threshold, link_threshold
|
| 215 |
+
)
|
| 216 |
+
return boxes
|
| 217 |
+
|
| 218 |
+
def postprocess(
|
| 219 |
+
self,
|
| 220 |
+
image: np.ndarray,
|
| 221 |
+
boxes: list[BoxTuple],
|
| 222 |
+
inverse_ratio: float,
|
| 223 |
+
slope_ths: float = 0.1,
|
| 224 |
+
ratio_ths: float = 0.5,
|
| 225 |
+
center_ths: float = 0.5,
|
| 226 |
+
dim_ths: float = 0.5,
|
| 227 |
+
space_ths: float = 1.0,
|
| 228 |
+
add_margin: float = 0.1,
|
| 229 |
+
min_size: int = 0,
|
| 230 |
+
) -> Tuple[list[RegionTuple], list[BoxTuple]]:
|
| 231 |
+
|
| 232 |
+
# coordinate adjustment
|
| 233 |
+
boxes = adjust_result_coordinates(boxes, inverse_ratio)
|
| 234 |
+
|
| 235 |
+
max_y, max_x, _ = image.shape
|
| 236 |
+
|
| 237 |
+
# extract region and merge
|
| 238 |
+
region_list, box_list = extract_regions_from_boxes(boxes, slope_ths)
|
| 239 |
+
|
| 240 |
+
region_list = greedy_merge(
|
| 241 |
+
region_list,
|
| 242 |
+
ratio_ths=ratio_ths,
|
| 243 |
+
center_ths=center_ths,
|
| 244 |
+
dim_ths=dim_ths,
|
| 245 |
+
space_ths=space_ths,
|
| 246 |
+
verbose=0
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
# add margin
|
| 250 |
+
region_list = [
|
| 251 |
+
region.expand(add_margin, (max_x, max_y)).as_tuple()
|
| 252 |
+
for region in region_list
|
| 253 |
+
]
|
| 254 |
+
|
| 255 |
+
box_list = [box_expand(box, add_margin, (max_x, max_y)) for box in box_list]
|
| 256 |
+
|
| 257 |
+
# filter by size
|
| 258 |
+
if min_size:
|
| 259 |
+
if min_size < 1:
|
| 260 |
+
min_size = int(min(max_y, max_x) * min_size)
|
| 261 |
+
|
| 262 |
+
region_list = [
|
| 263 |
+
i for i in region_list if max(i[1] - i[0], i[3] - i[2]) > min_size
|
| 264 |
+
]
|
| 265 |
+
box_list = [
|
| 266 |
+
i
|
| 267 |
+
for i in box_list
|
| 268 |
+
if max(utils.diff([c[0] for c in i]), utils.diff([c[1] for c in i]))
|
| 269 |
+
> min_size
|
| 270 |
+
]
|
| 271 |
+
|
| 272 |
+
return region_list, box_list
|
ezocr/build/lib/easyocrlite/types.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Tuple
|
| 2 |
+
|
| 3 |
+
Point = Tuple[int, int]
|
| 4 |
+
BoxTuple = Tuple[Point, Point, Point, Point]
|
| 5 |
+
RegionTuple = Tuple[int, int, int, int]
|
lihe.png
ADDED
|
paibian.jpeg
ADDED
|
shupai.png
ADDED
|
zuowen.jpg
ADDED
|